Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 19, 2013

Use of direct immersion solid-phase microextraction on polyacrylate and polydimethylsiloxane stationary phases for simultaneous determination of the neutral and basic pharmaceuticals in wastewater

  • Urszula Kotowska EMAIL logo and Katarzyna Bieńczyk
From the journal Open Chemistry

Abstract

Direct immersion solid-phase microextraction has been optimized and applied to the simultaneous determination of the neutral and basic pharmaceuticals: caffeine, carbamazepine, clomipramine, chlorprothixene and clotrimazole at low concentrations in municipal wastewater. Two absorption type stationary phases: polydimethylsiloxane (PDMS) and polyacrylate (PA) have been found to be most effective for extraction of target analytes. The separation and detection were carried out by gas chromatograph coupled with mass spectrometer working in the selected ion monitoring mode. The method was validated for linearity, detection and quantitation limits, selectivity and precision. The average correlation coefficient of the calibration curves was 0.9933. The LOD values in influent and effluent wastewater were in the range of 10–145 ng L−1 and 4–111 ng L−1, respectively, which were a bit higher than those in the deionized water due to matrix effect. The high values of distribution coefficient (K fs ) in PDMS/water and PA/water systems (log K fs between 3.05 and 4.23) indicates the very high applicability of these stationary phases for determination of carbamazepine, clomipramine, chlorprothixene and clotrimazole in water samples.

[1] M.S. Diaz-Cruz, D. Barcelo, in: D. Barcelo (Ed.), Emerging organic pollutants in wastewaters and sludge (Springer-Verlag, Berlin Heidelberg, 2004) Vol. 5, 227 Search in Google Scholar

[2] D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, H.T. Buxton, Environ. Sci. Technol. 36, 1202 (2002) http://dx.doi.org/10.1021/es011055j10.1021/es011055jSearch in Google Scholar

[3] K.K. Barnes, D.W. Kolpin, E.T. Furlong, S.D. Zaugg, M.T. Meyer, L.B. Barber, Sci. Total Environ. 402, 192 (2008) http://dx.doi.org/10.1016/j.scitotenv.2008.04.02810.1016/j.scitotenv.2008.04.028Search in Google Scholar

[4] L. Lindqvist, T. Tuhkanen, L. Kronberg, Water Res. 39, 2219 (2005) http://dx.doi.org/10.1016/j.watres.2005.04.00310.1016/j.watres.2005.04.003Search in Google Scholar

[5] M. Carballa, F. Omil, J.M. Lema, M. Llompart, C. Garcia-Jares, I. Rodriguez, M. Gomez, T. Ternes, Water Res. 38, 2918 (2004) http://dx.doi.org/10.1016/j.watres.2004.03.02910.1016/j.watres.2004.03.029Search in Google Scholar

[6] O.A.H. Jones, N. Voulvoulis, J.N. Lester, Water Res. 36, 5013 (2002) http://dx.doi.org/10.1016/S0043-1354(02)00227-010.1016/S0043-1354(02)00227-0Search in Google Scholar

[7] C.G. Daughton, T. Ternes, Environ. Health Perspect. 107, 907 (1999) http://dx.doi.org/10.1289/ehp.99107s690710.1289/ehp.99107s6907Search in Google Scholar PubMed PubMed Central

[8] K. Kümmerer, Pharmaceuticals in the environment: sources, fate, effects and risks, 3rd edition (Springer-Verlag, Berlin, Heidelberg, New York, 2008) http://dx.doi.org/10.1007/978-3-540-74664-510.1007/978-3-540-74664-5Search in Google Scholar

[9] J.C. Chee-Sanford, R.I. Mackie, S. Koike, I. Krapac, S. Maxwell, Y. Lin, R.I. Aminov, J. Environ. Qual. 38, 1086 (2009) http://dx.doi.org/10.2134/jeq2008.012810.2134/jeq2008.0128Search in Google Scholar PubMed

[10] S.P. Singh, A. Azua, A. Chaudhary, S. Khan, K.L. Willett, P.R. Gardinali, Ecotoxicology 19, 338 (2010) http://dx.doi.org/10.1007/s10646-009-0416-010.1007/s10646-009-0416-0Search in Google Scholar PubMed

[11] D.R. Baker, B. Kasprzyk-Hordern, J. Chromatogr. A 1218, 1620 (2011) http://dx.doi.org/10.1016/j.chroma.2011.01.06010.1016/j.chroma.2011.01.060Search in Google Scholar PubMed

[12] A. Karnjanapiboonwong, J.G. Suski, A.A. Shah, Q. Cai, A.N. Morse, T.A. Anderson, Water, Air, Soil Pollut. 216, 257 (2011) http://dx.doi.org/10.1007/s11270-010-0532-810.1007/s11270-010-0532-8Search in Google Scholar

[13] J.L. Santos, I. Aparicio, E. Alonso, M. Callejón, Anal. Chim. Acta, 550, 116 (2005) http://dx.doi.org/10.1016/j.aca.2005.06.06410.1016/j.aca.2005.06.064Search in Google Scholar

[14] R. Rosal, A. Rodriguez, J.A. Perdigon-Melon, A. Petre, E. Garcia-Calvo, M.J. Gomez, A. Aguera, A.R. Fernandez-Alba, Water Res. 44, 578 (2010) http://dx.doi.org/10.1016/j.watres.2009.07.00410.1016/j.watres.2009.07.004Search in Google Scholar PubMed

[15] J. Martín, D. Camacho-Munoz, J.L. Santos, I. Aparicio, E. Alonso, J. Hazard. Mater. 239, 40 (2012) http://dx.doi.org/10.1016/j.jhazmat.2012.04.06810.1016/j.jhazmat.2012.04.068Search in Google Scholar PubMed

[16] J.L. Santos, I. Aparicio, E. Alonso, Environ. Int., 33, 596 (2007) http://dx.doi.org/10.1016/j.envint.2006.09.01410.1016/j.envint.2006.09.014Search in Google Scholar PubMed

[17] R. Rosal, A. Rodríguez, J.A. Perdigón-Melón, A. Petre, E. García-Cavalo, M.J. Gómez, A. Agüera, A.R. Fernández-Alba, Water Res. 44, 578 (2010) http://dx.doi.org/10.1016/j.watres.2009.07.00410.1016/j.watres.2009.07.004Search in Google Scholar

[18] M. Hijosa-Valsero, V. Matamoros, J. Martín-Villacorta, E. Bécares, J.M. Bayona, Water Res. 44, 1429 (2010) http://dx.doi.org/10.1016/j.watres.2009.10.03210.1016/j.watres.2009.10.032Search in Google Scholar PubMed

[19] E. Zuccato, S. Castiglioni, R. Fanelli, J. Hazard. Mater. 122, 205 (2005) http://dx.doi.org/10.1016/j.jhazmat.2005.03.00110.1016/j.jhazmat.2005.03.001Search in Google Scholar PubMed

[20] Z.L. Zhang, J.L. Zhou, J. Chromatogr. A 1154, 205 (2007) http://dx.doi.org/10.1016/j.chroma.2007.03.10510.1016/j.chroma.2007.03.105Search in Google Scholar PubMed

[21] P.H. Roberts, K.V. Thomas, Sci. Total Environ. 356, 143 (2006) http://dx.doi.org/10.1016/j.scitotenv.2005.04.03110.1016/j.scitotenv.2005.04.031Search in Google Scholar PubMed

[22] C. Lacey, S. Basha, A. Morrissey, J. M. Tobin, Environ. Monit. Assess. 184, 1049 (2012) http://dx.doi.org/10.1007/s10661-011-2020-z10.1007/s10661-011-2020-zSearch in Google Scholar PubMed

[23] Q. Huang, T. Yu, C. Tang, X. Peng, J. Chromatogr. B, 1217, 3481 (2010) 10.1016/j.chroma.2010.03.022Search in Google Scholar PubMed

[24] J. Pawliszyn, S. Liu, Anal. Chem. 59, 1475 (1987) http://dx.doi.org/10.1021/ac00137a02410.1021/ac00137a024Search in Google Scholar

[25] J. Pawliszyn, Solid-phase microextraction, theory and practice (Wiley, New York, 1997) 10.1007/s00897970137aSearch in Google Scholar

[26] A. Joss, E. Keller, A.C. Alder, A. Göbel, C.S. McArdell, T.A. Ternes, Water Res.; 39, 3139 (2005) http://dx.doi.org/10.1016/j.watres.2005.05.03110.1016/j.watres.2005.05.031Search in Google Scholar PubMed

[27] F. Hernandez, J. Beltran, F.J. Lopez, J.V. Gaspar, Anal. Chem. 72, 2313 (2000) http://dx.doi.org/10.1021/ac991115s10.1021/ac991115sSearch in Google Scholar PubMed

[28] R. Doong, S. Chang, Anal. Chem. 72, 3647 (2000) http://dx.doi.org/10.1021/ac000040l10.1021/ac000040lSearch in Google Scholar PubMed

[29] I. Valor, M. Perez, C. Cortada, D. Apraiz, J.C. Molto, G. Font, J. Sep. Sci. 34, 1 (2001) Search in Google Scholar

[30] D.A. Lambropoulou, V.A. Sakkas, T.A. Albanis, Anal. Bioanal. Chem. 374, 932 (2002) http://dx.doi.org/10.1007/s00216-002-1549-710.1007/s00216-002-1549-7Search in Google Scholar PubMed

Published Online: 2013-7-19
Published in Print: 2013-10-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.11.2023 from https://www.degruyter.com/document/doi/10.2478/s11532-013-0296-2/html
Scroll to top button