Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 19, 2013

Use of direct immersion solid-phase microextraction on polyacrylate and polydimethylsiloxane stationary phases for simultaneous determination of the neutral and basic pharmaceuticals in wastewater

  • Urszula Kotowska EMAIL logo and Katarzyna Bieńczyk
From the journal Open Chemistry


Direct immersion solid-phase microextraction has been optimized and applied to the simultaneous determination of the neutral and basic pharmaceuticals: caffeine, carbamazepine, clomipramine, chlorprothixene and clotrimazole at low concentrations in municipal wastewater. Two absorption type stationary phases: polydimethylsiloxane (PDMS) and polyacrylate (PA) have been found to be most effective for extraction of target analytes. The separation and detection were carried out by gas chromatograph coupled with mass spectrometer working in the selected ion monitoring mode. The method was validated for linearity, detection and quantitation limits, selectivity and precision. The average correlation coefficient of the calibration curves was 0.9933. The LOD values in influent and effluent wastewater were in the range of 10–145 ng L−1 and 4–111 ng L−1, respectively, which were a bit higher than those in the deionized water due to matrix effect. The high values of distribution coefficient (K fs ) in PDMS/water and PA/water systems (log K fs between 3.05 and 4.23) indicates the very high applicability of these stationary phases for determination of carbamazepine, clomipramine, chlorprothixene and clotrimazole in water samples.

[1] M.S. Diaz-Cruz, D. Barcelo, in: D. Barcelo (Ed.), Emerging organic pollutants in wastewaters and sludge (Springer-Verlag, Berlin Heidelberg, 2004) Vol. 5, 227 Search in Google Scholar

[2] D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, H.T. Buxton, Environ. Sci. Technol. 36, 1202 (2002) in Google Scholar

[3] K.K. Barnes, D.W. Kolpin, E.T. Furlong, S.D. Zaugg, M.T. Meyer, L.B. Barber, Sci. Total Environ. 402, 192 (2008) in Google Scholar

[4] L. Lindqvist, T. Tuhkanen, L. Kronberg, Water Res. 39, 2219 (2005) in Google Scholar

[5] M. Carballa, F. Omil, J.M. Lema, M. Llompart, C. Garcia-Jares, I. Rodriguez, M. Gomez, T. Ternes, Water Res. 38, 2918 (2004) in Google Scholar

[6] O.A.H. Jones, N. Voulvoulis, J.N. Lester, Water Res. 36, 5013 (2002) in Google Scholar

[7] C.G. Daughton, T. Ternes, Environ. Health Perspect. 107, 907 (1999) in Google Scholar PubMed PubMed Central

[8] K. Kümmerer, Pharmaceuticals in the environment: sources, fate, effects and risks, 3rd edition (Springer-Verlag, Berlin, Heidelberg, New York, 2008) in Google Scholar

[9] J.C. Chee-Sanford, R.I. Mackie, S. Koike, I. Krapac, S. Maxwell, Y. Lin, R.I. Aminov, J. Environ. Qual. 38, 1086 (2009) in Google Scholar PubMed

[10] S.P. Singh, A. Azua, A. Chaudhary, S. Khan, K.L. Willett, P.R. Gardinali, Ecotoxicology 19, 338 (2010) in Google Scholar PubMed

[11] D.R. Baker, B. Kasprzyk-Hordern, J. Chromatogr. A 1218, 1620 (2011) in Google Scholar PubMed

[12] A. Karnjanapiboonwong, J.G. Suski, A.A. Shah, Q. Cai, A.N. Morse, T.A. Anderson, Water, Air, Soil Pollut. 216, 257 (2011) in Google Scholar

[13] J.L. Santos, I. Aparicio, E. Alonso, M. Callejón, Anal. Chim. Acta, 550, 116 (2005) in Google Scholar

[14] R. Rosal, A. Rodriguez, J.A. Perdigon-Melon, A. Petre, E. Garcia-Calvo, M.J. Gomez, A. Aguera, A.R. Fernandez-Alba, Water Res. 44, 578 (2010) in Google Scholar PubMed

[15] J. Martín, D. Camacho-Munoz, J.L. Santos, I. Aparicio, E. Alonso, J. Hazard. Mater. 239, 40 (2012) in Google Scholar PubMed

[16] J.L. Santos, I. Aparicio, E. Alonso, Environ. Int., 33, 596 (2007) in Google Scholar PubMed

[17] R. Rosal, A. Rodríguez, J.A. Perdigón-Melón, A. Petre, E. García-Cavalo, M.J. Gómez, A. Agüera, A.R. Fernández-Alba, Water Res. 44, 578 (2010) in Google Scholar

[18] M. Hijosa-Valsero, V. Matamoros, J. Martín-Villacorta, E. Bécares, J.M. Bayona, Water Res. 44, 1429 (2010) in Google Scholar PubMed

[19] E. Zuccato, S. Castiglioni, R. Fanelli, J. Hazard. Mater. 122, 205 (2005) in Google Scholar PubMed

[20] Z.L. Zhang, J.L. Zhou, J. Chromatogr. A 1154, 205 (2007) in Google Scholar PubMed

[21] P.H. Roberts, K.V. Thomas, Sci. Total Environ. 356, 143 (2006) in Google Scholar PubMed

[22] C. Lacey, S. Basha, A. Morrissey, J. M. Tobin, Environ. Monit. Assess. 184, 1049 (2012) in Google Scholar PubMed

[23] Q. Huang, T. Yu, C. Tang, X. Peng, J. Chromatogr. B, 1217, 3481 (2010) 10.1016/j.chroma.2010.03.022Search in Google Scholar PubMed

[24] J. Pawliszyn, S. Liu, Anal. Chem. 59, 1475 (1987) in Google Scholar

[25] J. Pawliszyn, Solid-phase microextraction, theory and practice (Wiley, New York, 1997) 10.1007/s00897970137aSearch in Google Scholar

[26] A. Joss, E. Keller, A.C. Alder, A. Göbel, C.S. McArdell, T.A. Ternes, Water Res.; 39, 3139 (2005) in Google Scholar PubMed

[27] F. Hernandez, J. Beltran, F.J. Lopez, J.V. Gaspar, Anal. Chem. 72, 2313 (2000) in Google Scholar PubMed

[28] R. Doong, S. Chang, Anal. Chem. 72, 3647 (2000) in Google Scholar PubMed

[29] I. Valor, M. Perez, C. Cortada, D. Apraiz, J.C. Molto, G. Font, J. Sep. Sci. 34, 1 (2001) Search in Google Scholar

[30] D.A. Lambropoulou, V.A. Sakkas, T.A. Albanis, Anal. Bioanal. Chem. 374, 932 (2002) in Google Scholar PubMed

Published Online: 2013-7-19
Published in Print: 2013-10-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.11.2023 from
Scroll to top button