Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 19, 2013

Shape-controlled synthesis of polyhedral CdS flowerlike architectures and their optical properties

  • Qinghong Kong EMAIL logo , Hui Wu , Xingguang Zhang , Shanshan Yao , Junhao Zhang and Xiaoning Zhang
From the journal Open Chemistry


Fabrication of polyhedral CdS flower-like architectures have been achieved on a large scale through a mixed solvothermal method. The obtained CdS are characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy, and the results indicate that the CdS flower-like architectures with diameters of 1.5–2.0 µm are hexagonal wurtzite phase and are assembled by some pyramids with the bottom side length of about 440 nm, which have some crystallographic faces. A series of relevant experiments through altering experimental parameters, indicate that the temperature, starting materials and solvent play key roles for the shape evolution of CdS flower-like architectures. The studies of optical properties for polyhedral CdS flower-like architectures indicate that the UV-vis spectroscopy shows a blue-shift absorption peak at 500 nm compared to that of bulk CdS, the photoluminescence spectroscopy shows an emission peak at 640 nm and another strong emission peak at 695 nm, which are believed to be attributed to excitonic emission and deep levels.

[1] S.W. Hsu, K. On, A.R. Tao, J. Am. Chem. Soc. 133, 19072 (2011) in Google Scholar PubMed

[2] S. Heedt, C. Morgan, K. Weis, D.E. Burgler, R. Calarco, H. Hardtdegen, D. Grutzmacher, Th. Schapers, Nano Lett. 12, 4437 (2012) in Google Scholar PubMed

[3] D.K. Ma, S.M. Huang, W.X. Chen, S.W. Hu, F.F. Shi, K.L. Fan, J. Phys. Chem. C 113, 4369 (2009) in Google Scholar

[4] Y. Cui, G. Wang, D.C. Pan, J. Mater. Chem. 22, 12471 (2012) in Google Scholar

[5] Z.L. Wang, J.H. Song, Science 312, 242 (2006) in Google Scholar PubMed

[6] H.B. Li, L.L. Chai, X.Q. Wang, X.Y. Wu, G.C. Xi, Y.K. Liu, Y.T. Qian, Cryst. Growth Des. 7, 1918 (2007) in Google Scholar

[7] T. Ghoshal, S. Biswas, P.M.G. Nambissan, G. Majumdar, S.K. De, Cryst. Growth Des. 9, 1287 (2009) in Google Scholar

[8] R. Graham, D. Yu, Nano Lett. 12, 4360 (2012) in Google Scholar PubMed

[9] Y. Qin, F. Zhang, Y. Chen, Y.J. Zhou, J. Li, A.W. Zhu, Y.P. Luo, Y. Tian, J.H. Yang, J. Phys. Chem. C 116, 11994 (2012) in Google Scholar

[10] S.K. Kim, R.W. Day, J.F. Cahoon, T.J. Kempa, K.D. Song, H.G. Park, C.M. Lieber, Nano Lett. 12, 4971 (2012) in Google Scholar PubMed

[11] O. Loh, X.D. Wei, C.H. Ke, J. Sullivan, H.D. Espinosa, Small 7, 79 (2011) in Google Scholar PubMed

[12] C. Nobile, P.D. Ashby, P.J. Schuck, A. Fiore, R. Mastria, R. Cingolani, L. Manna, R. Krahne, Small 4, 2123 (2008) in Google Scholar PubMed

[13] S.C. Hayden, N.K. Allam, M.A. El-Sayed, J. Am. Chem. Soc. 13, 14406 (2010) in Google Scholar PubMed

[14] L. Weinhardt, T. Gleim, O. Fuchs, C. Heske, E. Umbach, M. Bar, H.J. Muffler, C.H. Fischer, M.C. Lux-Steiner, Y. Zubavichus, T.P. Niesen, F. Karg, Appl. Phys. Lett. 82, 571 (2003) in Google Scholar

[15] T. Gao, Q.H. Li, T.H. Wang, Appl. Phys. Lett. 86, 173105 (2005) in Google Scholar

[16] J.B. Seon, S.Y. Lee, J.M. Kim, H.D. Jeong, Chem. Mater. 21, 604 (2009) in Google Scholar

[17] K. Sato, Y. Tachibana, S. Hattori, T. Chiba, S. Kuwabata, J. Colloid Interf. Sci. 324, 257 (2008) in Google Scholar PubMed

[18] Z.X. Yang, W. Zhong, Y. Deng, C.T. Au, Y.W. Du, Cryst. Growth Des. 11, 2172 (2011) in Google Scholar

[19] X.Q. Fu, J.Y. Liu, Y.T. Wan, X.M. Zhang, F.L. Meng, J.H. Liu, J. Mater. Chem. 22, 17782 (2012) in Google Scholar

[20] R.M. Ma, L. Dai, G.G. Qin, Appl. Phys. Lett. 90, 93109 (2007) in Google Scholar

[21] V. Singh, R. Singh, G. Thompson, V. Jayaraman, S. Sanagapalli, V. Rangari, Sol. Energy Mater. Sol. Cells 81, 293 (2004) in Google Scholar

[22] Y.W. Jun, S.M. Lee, N.J. Kang, J. Cheon, J. Am. Chem. Soc. 123, 5150 (2001) in Google Scholar PubMed

[23] X.L. Wang, Z.C. Feng, D.Y. Fan, F.T. Fan, C. Li, Cryst. Growth Des. 10, 5312 (2010) in Google Scholar

[24] S.C. Yan, L.T. Sun, Y. Sheng, N.P. Huang, Z.D. Xiao, New J. Chem. 35, 299 (2011) in Google Scholar

[25] S.L. Xiong, X.G. Zhang, Y.T. Qian, Cryst. Growth Des. 9, 5259 (2009) in Google Scholar

[26] T.Y. Zhai, X.S. Fang, Y. Bando, B. Dierre, B.D. Liu, H.B. Zeng, X.J. Xu, Y. Huang, X.L. Yuan, T. Sekiguchi, D. Golberg, Adv. Funct. Mater. 19, 2423 (2009) in Google Scholar

[27] T.Y. Zhai, X.S. Fang, L. Li, Y. Bando, D. Golberg, Nanoscale 2, 168 (2010) in Google Scholar PubMed

[28] S.L. Xiong, B.J. Xi, Y.T. Qian, J. Phys. Chem. C 114, 14029 (2010) in Google Scholar

[29] L.Y. Chen, Z.D. Zhang, W.Z. Wang, J. Phys. Chem. C 112, 4117 (2008) in Google Scholar

[30] Z.X. Yang, W. Zhang, P. Zhang, M.H. Xu, C.T. Au, Y.W. Du, CrystEngComm 14, 585 (2012) in Google Scholar

[31] G.Z. Shen, C.J. Lee, Cryst. Growth Des. 5, 1085 (2005) in Google Scholar

[32] P.T. Zhao, K.X. Huang. Cryst. Growth Des. 8, 717 (2008) in Google Scholar

Published Online: 2013-7-19
Published in Print: 2013-10-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 6.12.2023 from
Scroll to top button