Abstract
Fabrication of polyhedral CdS flower-like architectures have been achieved on a large scale through a mixed solvothermal method. The obtained CdS are characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy, and the results indicate that the CdS flower-like architectures with diameters of 1.5–2.0 µm are hexagonal wurtzite phase and are assembled by some pyramids with the bottom side length of about 440 nm, which have some crystallographic faces. A series of relevant experiments through altering experimental parameters, indicate that the temperature, starting materials and solvent play key roles for the shape evolution of CdS flower-like architectures. The studies of optical properties for polyhedral CdS flower-like architectures indicate that the UV-vis spectroscopy shows a blue-shift absorption peak at 500 nm compared to that of bulk CdS, the photoluminescence spectroscopy shows an emission peak at 640 nm and another strong emission peak at 695 nm, which are believed to be attributed to excitonic emission and deep levels.
[1] S.W. Hsu, K. On, A.R. Tao, J. Am. Chem. Soc. 133, 19072 (2011) http://dx.doi.org/10.1021/ja208987610.1021/ja2089876Search in Google Scholar PubMed
[2] S. Heedt, C. Morgan, K. Weis, D.E. Burgler, R. Calarco, H. Hardtdegen, D. Grutzmacher, Th. Schapers, Nano Lett. 12, 4437 (2012) http://dx.doi.org/10.1021/nl301052g10.1021/nl301052gSearch in Google Scholar PubMed
[3] D.K. Ma, S.M. Huang, W.X. Chen, S.W. Hu, F.F. Shi, K.L. Fan, J. Phys. Chem. C 113, 4369 (2009) http://dx.doi.org/10.1021/jp810726d10.1021/jp810726dSearch in Google Scholar
[4] Y. Cui, G. Wang, D.C. Pan, J. Mater. Chem. 22, 12471 (2012) http://dx.doi.org/10.1039/c2jm32034g10.1039/c2jm32034gSearch in Google Scholar
[5] Z.L. Wang, J.H. Song, Science 312, 242 (2006) http://dx.doi.org/10.1126/science.112400510.1126/science.1124005Search in Google Scholar PubMed
[6] H.B. Li, L.L. Chai, X.Q. Wang, X.Y. Wu, G.C. Xi, Y.K. Liu, Y.T. Qian, Cryst. Growth Des. 7, 1918 (2007) http://dx.doi.org/10.1021/cg070358810.1021/cg0703588Search in Google Scholar
[7] T. Ghoshal, S. Biswas, P.M.G. Nambissan, G. Majumdar, S.K. De, Cryst. Growth Des. 9, 1287 (2009) http://dx.doi.org/10.1021/cg800203y10.1021/cg800203ySearch in Google Scholar
[8] R. Graham, D. Yu, Nano Lett. 12, 4360 (2012) http://dx.doi.org/10.1021/nl302161n10.1021/nl302161nSearch in Google Scholar PubMed
[9] Y. Qin, F. Zhang, Y. Chen, Y.J. Zhou, J. Li, A.W. Zhu, Y.P. Luo, Y. Tian, J.H. Yang, J. Phys. Chem. C 116, 11994 (2012) http://dx.doi.org/10.1021/jp212029n10.1021/jp212029nSearch in Google Scholar
[10] S.K. Kim, R.W. Day, J.F. Cahoon, T.J. Kempa, K.D. Song, H.G. Park, C.M. Lieber, Nano Lett. 12, 4971 (2012) http://dx.doi.org/10.1021/nl302578z10.1021/nl302578zSearch in Google Scholar PubMed
[11] O. Loh, X.D. Wei, C.H. Ke, J. Sullivan, H.D. Espinosa, Small 7, 79 (2011) http://dx.doi.org/10.1002/smll.20100116610.1002/smll.201001166Search in Google Scholar PubMed
[12] C. Nobile, P.D. Ashby, P.J. Schuck, A. Fiore, R. Mastria, R. Cingolani, L. Manna, R. Krahne, Small 4, 2123 (2008) http://dx.doi.org/10.1002/smll.20080060410.1002/smll.200800604Search in Google Scholar PubMed
[13] S.C. Hayden, N.K. Allam, M.A. El-Sayed, J. Am. Chem. Soc. 13, 14406 (2010) http://dx.doi.org/10.1021/ja107034z10.1021/ja107034zSearch in Google Scholar PubMed
[14] L. Weinhardt, T. Gleim, O. Fuchs, C. Heske, E. Umbach, M. Bar, H.J. Muffler, C.H. Fischer, M.C. Lux-Steiner, Y. Zubavichus, T.P. Niesen, F. Karg, Appl. Phys. Lett. 82, 571 (2003) http://dx.doi.org/10.1063/1.153955310.1063/1.1539553Search in Google Scholar
[15] T. Gao, Q.H. Li, T.H. Wang, Appl. Phys. Lett. 86, 173105 (2005) http://dx.doi.org/10.1063/1.191551410.1063/1.1915514Search in Google Scholar
[16] J.B. Seon, S.Y. Lee, J.M. Kim, H.D. Jeong, Chem. Mater. 21, 604 (2009) http://dx.doi.org/10.1021/cm801557q10.1021/cm801557qSearch in Google Scholar
[17] K. Sato, Y. Tachibana, S. Hattori, T. Chiba, S. Kuwabata, J. Colloid Interf. Sci. 324, 257 (2008) http://dx.doi.org/10.1016/j.jcis.2008.04.07510.1016/j.jcis.2008.04.075Search in Google Scholar PubMed
[18] Z.X. Yang, W. Zhong, Y. Deng, C.T. Au, Y.W. Du, Cryst. Growth Des. 11, 2172 (2011) http://dx.doi.org/10.1021/cg101463r10.1021/cg101463rSearch in Google Scholar
[19] X.Q. Fu, J.Y. Liu, Y.T. Wan, X.M. Zhang, F.L. Meng, J.H. Liu, J. Mater. Chem. 22, 17782 (2012) http://dx.doi.org/10.1039/c2jm33352j10.1039/c2jm33352jSearch in Google Scholar
[20] R.M. Ma, L. Dai, G.G. Qin, Appl. Phys. Lett. 90, 93109 (2007) http://dx.doi.org/10.1063/1.271000410.1063/1.2710004Search in Google Scholar
[21] V. Singh, R. Singh, G. Thompson, V. Jayaraman, S. Sanagapalli, V. Rangari, Sol. Energy Mater. Sol. Cells 81, 293 (2004) http://dx.doi.org/10.1016/j.solmat.2003.11.00710.1016/j.solmat.2003.11.007Search in Google Scholar
[22] Y.W. Jun, S.M. Lee, N.J. Kang, J. Cheon, J. Am. Chem. Soc. 123, 5150 (2001) http://dx.doi.org/10.1021/ja015759510.1021/ja0157595Search in Google Scholar PubMed
[23] X.L. Wang, Z.C. Feng, D.Y. Fan, F.T. Fan, C. Li, Cryst. Growth Des. 10, 5312 (2010) http://dx.doi.org/10.1021/cg101166t10.1021/cg101166tSearch in Google Scholar
[24] S.C. Yan, L.T. Sun, Y. Sheng, N.P. Huang, Z.D. Xiao, New J. Chem. 35, 299 (2011) http://dx.doi.org/10.1039/c0nj00838a10.1039/c0nj00838aSearch in Google Scholar
[25] S.L. Xiong, X.G. Zhang, Y.T. Qian, Cryst. Growth Des. 9, 5259 (2009) http://dx.doi.org/10.1021/cg900780a10.1021/cg900780aSearch in Google Scholar
[26] T.Y. Zhai, X.S. Fang, Y. Bando, B. Dierre, B.D. Liu, H.B. Zeng, X.J. Xu, Y. Huang, X.L. Yuan, T. Sekiguchi, D. Golberg, Adv. Funct. Mater. 19, 2423 (2009) http://dx.doi.org/10.1002/adfm.20090029510.1002/adfm.200900295Search in Google Scholar
[27] T.Y. Zhai, X.S. Fang, L. Li, Y. Bando, D. Golberg, Nanoscale 2, 168 (2010) http://dx.doi.org/10.1039/b9nr00415g10.1039/b9nr00415gSearch in Google Scholar PubMed
[28] S.L. Xiong, B.J. Xi, Y.T. Qian, J. Phys. Chem. C 114, 14029 (2010) http://dx.doi.org/10.1021/jp104958810.1021/jp1049588Search in Google Scholar
[29] L.Y. Chen, Z.D. Zhang, W.Z. Wang, J. Phys. Chem. C 112, 4117 (2008) http://dx.doi.org/10.1021/jp710074h10.1021/jp710074hSearch in Google Scholar
[30] Z.X. Yang, W. Zhang, P. Zhang, M.H. Xu, C.T. Au, Y.W. Du, CrystEngComm 14, 585 (2012) http://dx.doi.org/10.1039/c1ce05732d10.1039/C1CE05732DSearch in Google Scholar
[31] G.Z. Shen, C.J. Lee, Cryst. Growth Des. 5, 1085 (2005) http://dx.doi.org/10.1021/cg049643710.1021/cg0496437Search in Google Scholar
[32] P.T. Zhao, K.X. Huang. Cryst. Growth Des. 8, 717 (2008) http://dx.doi.org/10.1021/cg070252c10.1021/cg070252cSearch in Google Scholar
© 2013 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.