Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 19, 2013

Flow injection analysis of ethambutol in synthetic urine using a graphite-polyurethane composite electrode as an amperometric detector

  • Camila Perantoni EMAIL logo , Alessandra Azevedo , Fernando Vaz , Marcone Oliveira , Renato Matos and Denise Lowinsohn
From the journal Open Chemistry

Abstract

Ethambutol (ETB) is a first-line antitubercular drug effective against actively growing Mycobacterium tuberculosis. Resistance of the mycobacterium to ethambutol among tuberculosis (TB) patients results from inadequate or inappropriate dosing of treatment or using low quality medication. It is therefore necessary to develop reliable methods for determining ethambutol metabolic profiles of patients at point of care for proper dosing. Herein an efficient ETB sensor device is illustrated. It consists of a graphite-polyurethane composite electrode. In order to characterise the electrochemical behaviour of ethambutol at pH = 8.0 voltammetric studies were performed. The detector was assembled in a flow injection apparatus and operated at +1.2 V (vs. Ag/AgCl(NaCl sat.)). The influence of sample volume and flow rate was studied. The linear response for the method was extended up to a 1.1 mmol L−1 ethambutol solution with a detection limit of 0.0634 mmol L−1. The reproducibility of current responses for injections of 0.7 mmol L−1 ethambutol solution was evaluated to be 5.1% (n = 30) and the analytical frequency was 161 determinations h−1. Two different samples were successfully analysed and the results were in good agreement with those obtained using capillary zone electrophoresis (CZE).

[1] M. V. N. de Souza, Curr. Opin. Pulmon. Med. 12, 167 (2006) http://dx.doi.org/10.1097/01.mcp.0000219264.42686.c910.1097/01.mcp.0000219264.42686.c9Search in Google Scholar

[2] M.S. Tawakkol, S.A. Ismaiel, M.M. Amer, Pharmazie 33, 85 (1978) Search in Google Scholar

[3] H.S. Sang, H.J. Sun, U.P. Kyoung, Y. Yoon, H.L. Jae, J.Q. Kim, J. Song, Rapid Commun. Mass Spectrosc. 21, 1331 (2007) http://dx.doi.org/10.1002/rcm.296110.1002/rcm.2961Search in Google Scholar

[4] Z. Gong, Y. Basir, D. Chu, M. McCort-Tipton, J. Chromatogr. B 877, 1698 (2009) http://dx.doi.org/10.1016/j.jchromb.2009.04.02310.1016/j.jchromb.2009.04.023Search in Google Scholar

[5] C.-K. Ma, C.-S. Mok, P.-K. Hon, Anal. Chim. Acta 314, 77 (1995) http://dx.doi.org/10.1016/0003-2670(95)00264-Z10.1016/0003-2670(95)00264-ZSearch in Google Scholar

[6] M. Breda, P. Marrari, E. Pianezzola, M.S. Benedetti, J. Chromatogr. A 729, 301 (1996) http://dx.doi.org/10.1016/0021-9673(95)01093-910.1016/0021-9673(95)01093-9Search in Google Scholar

[7] A.S. Kenyon, T. Layloff, J. Sherma, J. Liquid Chromatogr. R. T. 24, 1479 (2001) http://dx.doi.org/10.1081/JLC-10010392410.1081/JLC-100103924Search in Google Scholar

[8] Y.-C. Hsieh, C.-W. Whang, J. Chromatogr. A 1122, 279 (2006) http://dx.doi.org/10.1016/j.chroma.2006.05.07810.1016/j.chroma.2006.05.078Search in Google Scholar PubMed

[9] A.F. Faria, M.V.N. Souza, R.E. Bruns, M.A.L. Oliveira, J. Chromatogr. A 1202, 224 (2008) http://dx.doi.org/10.1016/j.chroma.2008.07.01110.1016/j.chroma.2008.07.011Search in Google Scholar PubMed

[10] A.F. Faria, M.V.N. Souza, R.E. Bruns, M.A.L. Oliveira, Talanta 82, 333 (2010) http://dx.doi.org/10.1016/j.talanta.2010.04.04410.1016/j.talanta.2010.04.044Search in Google Scholar PubMed

[11] J.A.F. Silva, N.V. Castro, D.P. Jesus, A.F. Faria, M.V.N. Souza, M.A.L. Oliveira, Electrophoresis 31, 570 (2010) http://dx.doi.org/10.1002/elps.20090040410.1002/elps.200900404Search in Google Scholar PubMed

[12] S.S.M. Hassan, A. Shalaby, Microchim. Acta 109, 193 (1992) http://dx.doi.org/10.1007/BF0124247410.1007/BF01242474Search in Google Scholar

[13] A.F. Faria, L.F. Marcellos, J.P. Vasconcelos, M.V.N. de Souza, A.L.S. Júnior, W.R. do Carmo, R. Diniz, M.A.L. de Oliveira, J. Braz. Chem. Soc. 22, 867 (2011) http://dx.doi.org/10.1590/S0103-5053201100050000810.1590/S0103-50532011000500008Search in Google Scholar

[14] D.M. Shingbal, S.D. Naik, J. Assoc. Off. Anal. Chem. 65, 899 (1982) 10.1093/jaoac/65.4.899Search in Google Scholar

[15] V.K. Gupta, R. Prasad, A. Kumar, Talanta 60, 149 (2003) http://dx.doi.org/10.1016/S0039-9140(03)00118-810.1016/S0039-9140(03)00118-8Search in Google Scholar

[16] Y. Zhang, Y. Yang, Chin. J. Anal. Chem. 30, 857 (2002) Search in Google Scholar

[17] C. Shao, Y. Wei, S. Li, C. Li, Chem. Anal. (Warsaw) 53, 511 (2008) Search in Google Scholar

[18] C.B. Perantoni, L.G.S. Carbogim, F.S. Semaan, R.C. Matos, D. Lowinsohn, Electroanalysis 23, 2582 (2011) http://dx.doi.org/10.1002/elan.20110019510.1002/elan.201100195Search in Google Scholar

[19] R.K. Mendes, S. Claro-Neto, E.T.G. Cavalheiro, Talanta 57, 909 (2002) http://dx.doi.org/10.1016/S0039-9140(02)00122-410.1016/S0039-9140(02)00122-4Search in Google Scholar

[20] F.S. Semaan, E.T.G. Cavalheiro, Analytical Letters 39, 2557 (2006) http://dx.doi.org/10.1080/0003271060082469810.1080/00032710600824698Search in Google Scholar

[21] D.C. Montgomery, Design and Analysis of Experiments, 6th edition (Wiley, New York, 2004) Search in Google Scholar

[22] K. Danzer, L.A. Currie, Pure and Applied Chemistry 70, 993 (1998) http://dx.doi.org/10.1351/pac19987004099310.1351/pac199870040993Search in Google Scholar

Published Online: 2013-7-19
Published in Print: 2013-10-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 6.12.2023 from https://www.degruyter.com/document/doi/10.2478/s11532-013-0301-9/html
Scroll to top button