Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 26, 2013

CaZrO3-based powders suitable for manufacturing electrochemical oxygen probes

Magdalena Dudek and Alicja Rapacz-Kmita
From the journal Open Chemistry


Calcium zirconate powders doped with a small amount of CaO were synthesised using the Pechini method. X-ray analysis revealed that solid solution was formed in the concentration up to 51.5% mol CaO. For synthesis of stoichiometric CaZrO3, the highest temperature was required (1150°C), but introduction of excess CaO from 50.5 to 51.5% mol enabled us to lower the synthesis temperature to 800°C. The sintering behaviour of such samples under non-isothermal conditions was studied by dilatometric methods. Deviations were found in stoichiometry; by increasing the CaO concentration in CaZrO3 sinterability improved in comparison to CaZrO3 with stoichiometric composition. The presence of CaO as second phase caused deterioration of the sinterability of the CaZrO3-based samples. Pellets sintered at 1500°C for 2 h reached 96–98% of theoretical density. SEM and TEM observations were used to characterise the microstructure of the prepared samples. The electrical properties of CaZrO3-based samples were investigated by the AC-impedance spectroscopy method. It was found that introduction of excess CaO into the CaZrO3 structure caused an increase in ionic conductivity up to the solubility limit. The possibility of using CaZrO3-based samples for constructing prototype electrochemical oxygen probes to determine activity of oxygen dissolved in molten copper is also demonstrated.

[1] J. Szczerba, Z. Pędzich, Ceramic International 36, 535 (2010) in Google Scholar

[2] A. Obregón, J. L. Rodríguez-Galicia, J. L. Cuevas, P. Pena, C. Baudin, J. Eur. Ceram. Soc. 31, 61 (2011) in Google Scholar

[3] C. Gargori, S. Cerro, R. Galindo, A. García, M. Llusar, G. Monrós, Ceramic International 38, 4453 (2012) in Google Scholar

[4] J.E. Contreras, G.A. CastilloT, E.A. Rodrıguez, T.K. Das, A.M. Guzman, Materials Characterization 54, 354 (2005) in Google Scholar

[5] M.A. Pena, J.L.G. Fierro, Chem. Rev. 101, 1981 (2001) in Google Scholar PubMed

[6] J.G. Cheng, J.S. Zhou, J.B. Goodenough, Y. Sui, Y. Ren, M.R. Suchomel, Phys. Rev. B 83 644 (2011) 10.1103/PhysRevB.83.064401Search in Google Scholar

[7] V.M. Orera, J.I. Pena, R.I. Merino, J.A. Lazaro, J.A. Valles, M.A. Rebolledo, Appl. Phys. Lett. 71, 2746 (1997) in Google Scholar

[8] R.I. Merino, R.A. Pardo, J.I. Pena, G.F. De la Fuente, A. Larrea, V.M. Orera, Phys. Rev. B56, 10907 (1997) 10.1103/PhysRevB.56.10907Search in Google Scholar

[9] R. Balda, S. García-Revilla, J. Fernańdez, R.I. Merino, J.I. Penã, V.M. Orera, J. Luminescence 129, 1422 (2009) in Google Scholar

[10] Y. Suzuki, H.J. Hwang, N. Kondo, T. Ohji, J. Am. Ceram. Soc. 84, 2713 (2001) in Google Scholar

[11] Y. Suzuki, N. Kondo, T. Ohji, J. Am. Ceram. Soc. 86, 1128 (2003) in Google Scholar

[12] P. Stoch, J. Szczerba, J. Lis, D. Madej, Z. Pędzich, J. Eur. Ceram. Soc. 32, 665 (2012) in Google Scholar

[13] T. Yajima, K. Koide, N. Fukatsu, T. Ohashi, H. Iwahara, Sensors and Actuators B: Chemical, 14(1–3), 697 (1993) in Google Scholar

[14] R.A. Davies, M.S. Islam, J.D. Gale, Solid State Ionics 126, 323 (1999) in Google Scholar

[15] R.A. Davies, M.S. Islam, A.V. Chadwick, G.E. Rush, Solid State Ionics 130, 115 (2000) in Google Scholar

[16] W. Englen, A. Buekenhoutd, Solid State Ionics 96, 55 (1997) in Google Scholar

[17] D. Janke, Metallurgical Transactions 13B, 227 (1982) 10.1007/BF02664579Search in Google Scholar

[18] A. Weyl, S. Wei, D. Janke, Steel research 65, 167 (1994) 10.1002/srin.199400947Search in Google Scholar

[19] G. Róg, M. Dudek, A. Kozłowska-Róg, M. Bućko, Electrochimica Acta 47, 4523 (2002) in Google Scholar

[20] M. Dudek, E. Drożdż-Cieśla, J. Alloys Comp. 475, 846 (2009) in Google Scholar

[21] M. Dudek, Materials Research Bulletin 44 1879 (2009) in Google Scholar

[22] S. González-López, A. Romero-Serrano, R. Vargas-García, B. Zeifert, A. Cruz-Ramírez, Revista de Metalurgia 46, 219 (2010) in Google Scholar

[23] M. Pollet, S. Marinel, G. Desgardin, J. Eur. Ceram. Soc. 24, 119 (2004) in Google Scholar

[24] X. Guo, Computational Materials Science 20, 168 (2001) in Google Scholar

[25] M.C. Martin, M.L. Mecartney, Solid State Ionics 161, 67 (2003) in Google Scholar

[26] M. Dudek, Advances in Materials Science 1,14 (2008). Search in Google Scholar

[27] M. Dudek, M. Bućko, Solid State Ionics 157, 183, (2003) in Google Scholar

[28] M. Dudek, W. Bogusz, Ceramics, Polish Ceramic Bulletin 91, 168 (2005) Search in Google Scholar

[29] M. Dudek, G. Róg, W. Bogusz, A. Kozłowska -Róg, M.M. Bućko, Ł. Zych, Materials Science-Poland 24, 253 (2006) Search in Google Scholar

[30] S.Ch. Hwang, G.M. Choi, Solid State Ionics 179, 1042 (2008) in Google Scholar

[31] S.Ch. Hwang, G.M. Choi, Solid State Ionics 177, 3099 (2006) in Google Scholar

Published Online: 2013-9-26
Published in Print: 2013-12-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow