Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 21, 2013

The exploration of interaction studies of smaller size, mostly ignored yet intrinsically inestimable molecules towards BSA; An example of STD and DOSY NMR

  • Sheraz Tanoli EMAIL logo , Nazish Tanoli , Saman Usmani , Zaheer-Ul-Haq and Antonio Ferreira
From the journal Open Chemistry


Larger size or novel structure molecules are always appreciated by all fields of experimental and computational science. Conversely, molecules with smaller size and simple structures are usually ignored with no explanation as to why. However, the vast majority of more diminutive molecules behave as a cornerstone in the synthesis of a bigger structural framework. Subsequently, we planned to uncover the interactions of small molecules towards macromolecules, and successfully presented the binding results of 2-aminopyridine and Isovanillin towards BSA through NMR techniques. STD epitope mapping and also the DOSY results provided evidence that Isovanillin remained closer to the binding cavity of protein. Titration experiments afforded 584 µM (0.584mM) and 487 µM (0.487 mM) dissociation constants for isovanillin and 2-aminopyridine respectively. Furthermore, changes in diffusion coefficient (with and without protein addition in DOSY spectra) were found to be 0.081 log (m2 s−1) and 0.096 log (m2 s−1) points for isovanillin and 2-aminopyridine respectively. Docking studies exhibit that these molecules can tie to site 1 (sub-area IIA) through the pi-pi interaction and hydrogen bonding with Trp213. Our results demonstrated that both compounds could be utilized as part of a transporter in the circulatory system and their extension-inspired compounds may be utilized in new drug design.

[1] M. Pellecchia, et al., Nat. Rev. Drug Discov. 7, 738 (2008) in Google Scholar

[2] B. Meyer, T. Peters, Angew. Chem. Int. Ed. 42, 864 (2003) in Google Scholar

[3] M. Mayer, B. Meyer, Angew. Chem. Int. Ed. 1999, 38, 1784 (1999)<1784::AID-ANIE1784>3.0.CO;2-Q10.1002/(SICI)1521-3773(19990614)38:12<1784::AID-ANIE1784>3.0.CO;2-QSearch in Google Scholar

[4] M. Mayer, B. Meyer, J. Am. Chem. Soc. 123, 6108 (2001) in Google Scholar

[5] P. J. Hajduk, E.T. Olejniczak, S. W. Fesik, J. Am. Chem. Soc. 119, 12257 (1997) in Google Scholar

[6] A. Chen, M. Shapiro, J. Am. Chem. Soc. 120, 10258 (1998) in Google Scholar

[7] P. Balaram, A.A. Bothner-By, J. Dadok, J. Am. Chem. Soc. 94, 4015 (1972) in Google Scholar

[8] D. Henrichsen, B. Ernst, J.L. Magnani, W.T. Wang, B. Meyer, T. Peters, Angew. Chem. Int. Ed. 38, 98 (1999)<98::AID-ANIE98>3.0.CO;2-V10.1002/(SICI)1521-3773(19990115)38:1/2<98::AID-ANIE98>3.0.CO;2-VSearch in Google Scholar

[9] C. Dalvit, P. Pevarello, M. Tatò, M. Veronesi, A. Vulpetti, M. Sundström, J. Biomol. NMR, 18, 65 (2000) in Google Scholar

[10] C. Ludwig, et al., J. Med. Chem. 51, 1 (2007) in Google Scholar

[11] V.M. Sánchez-Pedregal, M. Reese, J. Meiler, M.J.J. Blommers, C. Griesinger, T. Carlomagno, Angew. Chem. 117, 4244 (2005) in Google Scholar

[12] S.A.K. Tanoli. N.U. Tanoli, T.M. Bondancia, S. Usmani, R. Kerssebaum, A.G. Ferreira, Z.U. Haq, J.B. Fernandes, Analyst 138, 5137 (2013) in Google Scholar

[13] M. Lin, M.J. Shapiro, J.R. Wareing, J. Am. Chem. Soc. 119, 5249 (1997) in Google Scholar

[14] T.S. Derrick, E.F. McCord, C.K. Larive, J. Mag. Res. 155, 217 (2002) in Google Scholar

[15] D.A. Jayawickrama, C.K. Larive, E.F. McCord, D.C. Roe, Mag. Res. Chem. 36, 755 (1998)<755::AID-OMR362>3.0.CO;2-O10.1002/(SICI)1097-458X(1998100)36:10<755::AID-OMR362>3.0.CO;2-OSearch in Google Scholar

[16] A.A. Colbourne, G.A. Morris, M. Nilsson, J. Am. Chem. Soc. 133, 7640 (2011) in Google Scholar

[17] J.S. Gounarides, A. Chen, M.J. Shapiro, J. Chromatogr. B Biomed. Sci. Appl. 725, 79 (1999) in Google Scholar

[18] E.V.S. Gopalakrishnan, Int J Pharm. Bio. Sci. 2, 313 (2011) Search in Google Scholar

[19] M. Friedman, P.R. Henika, R.E. Mandrell, J. Food Prot. 66, 1811 (2003) 10.4315/0362-028X-66.10.1811Search in Google Scholar

[20] G. Panoutsopoulos, D. Kouretas, E. Gounaris, C. Beedham, Eur. J. Drug Metab. Ph. 29, 111 (2004) in Google Scholar

[21] G.I. Panoutsopoulos, D. Kouretas, C. Beedham, Chem. Res. Toxicol. 17, 1368 (2004) in Google Scholar

[22] G.I. Panoutsopoulos, C. Beedham, Acta Biochim. Pol. 51, 943 (2004) 10.18388/abp.2004_3550Search in Google Scholar

[23] K. Sasaki, R. Hosoya, Y.-M. Wang, G.L. Raulston, Biochem. Pharmacol. 32, 503 (1983) in Google Scholar

[24] C. Beedham, G.P. Ellis, G.B. West, Progress in Medicinal Chemistry (Elsevier Science Publishers B.V. (Biomedical Division), Amsterdam, 1987) 85–127 10.1016/S0079-6468(08)70420-XSearch in Google Scholar

[25] C. Beedham, S.E. Bruce, D.J. Critchley, Y. Al-Tayib, D.J. Rance, Eur. J. Drug Met. Pharmacokinet. 12, 307 (1987) in Google Scholar

[26] G. Pelsy, A.M. Klibanov, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 742, 352 (1983) in Google Scholar

[27] C. Beedham, Drug Metab. Rev. 16, 119 (1985) in Google Scholar PubMed

[28] U. Bluhm, et al., Eur. J. Med. Chem. 44, 2877 (2009) in Google Scholar PubMed

[29] S. Connolly, et al., J. Med. Chem. 47, 3320 (2004) in Google Scholar PubMed

[30] X.L. Jin, X. Wei, F.M. Qi, S.S. Yu, B. Zhou, S. Bai, Org. Biomol. Chem. 10, 3424 (2012) in Google Scholar PubMed

Published Online: 2013-12-21
Published in Print: 2014-3-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 5.12.2023 from
Scroll to top button