Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 21, 2013

Determination of vitamin B6 (pyridoxine hydrochloride) based on a novel BZ oscillating reaction system catalyzed by a macrocyclic complex

Qingling Zeng EMAIL logo , Lulu Chen , Xianyi Song , Gang Hu and Lin Hu
From the journal Open Chemistry


This paper reports a new method for determination of VB6 (pyridoxine hydrochloride) by its perturbation effects on a novel Belousov-Zhabotinskii (BZ) oscillating system. This novel BZ system, in which malic acid serves as the substrate, contains an enzyme-like complex, macrocyclic complex {[CuL](ClO4)2}, as catalyst. The ligand L in the complex is 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene. Results show that the addition of pyridoxine hydrochloride can perturb the oscillation amplitude and period, and the change of the oscillation amplitude is linearly proportional to the concentration of pyridoxine hydrochloride in the range of 5×10−7−2.5×10−4 M. The obtained RSD with seven samples is 3.073%. An assay of pharmaceutical tablets of vitamin B6 was evaluated. Some foreign ions were studied with respect to their possible influence on the determination of pyridoxine hydrochloride. The factors which influence this reaction include the concentration of reactant, the temperature of the reaction, property of catalyst, etc. Furthermore, the possible reaction mechanism has been proposed using the Field-Körös-Noyes (FKN) model.

[1] C.G. Friedrich, Adv. Microb. Physiol. 39, 235 (1997) in Google Scholar

[2] L.D. Wright, J. Agr. Food Chem. 2, 672, (1954) in Google Scholar

[3] R.J. Field, M. Burger, Oscillations and Travelling Waves in Chemical Systems (Wiley, New York, 1985) Search in Google Scholar

[4] I.R. Epstein, Chem. Eng. News 65, 24 (1987) 10.1021/cen-v065n045.p024Search in Google Scholar

[5] R.J. Field, E. Körös, R.M. Noyes, J. Am. Chem. Soc. 94, 8649 (1972) in Google Scholar

[6] R. Jiménez-Prieto, M. Silva, D. Pérez-Bendito, Anal. Chem. 67, 729 (1995) in Google Scholar

[7] L.P. Tikhonova, L.N. Zakrevskaya, K.B. Yatsimirskii, J. Anal. Chem. USSR 33, 1991 (1978) Search in Google Scholar

[8] H. Chen, W. Yang, H.X. Dai, X.X. Wei, J. Qu, J.Z. Gao, Chinese. Chem. Lett. 17, 1221 (2006) Search in Google Scholar

[9] R. Cervellati, E. Greco, S.D. Furrow, J. Phys. Chem. A 114, 12888 (2010) in Google Scholar PubMed

[10] J.Z. Gao, D.Y. Lv, H.T. Sun, W. Yang, J. Brazil. Chem. Soc. 20, 1827 (2009) in Google Scholar

[11] Z. Noszticzius, J. Bodiss, J. Am. Chem. Soc. 101, 3177 (1979) in Google Scholar

[12] M.C. Guedes, R.B. Faria, J. Phys. Chem. A 102, 1973 (1998) in Google Scholar

[13] K. Kurin-Csörgei, A.M. Zhabotinsky, M. Orbán, I.R. Epstein, J. Phys. Chem. 100, 5393 (1996) in Google Scholar

[14] F. Bolletta, V. Balzani, J. Am. Chem. Soc. 104, 4250 (1982) in Google Scholar

[15] K.B. Yatsimirskii, L.P. Tikhonova, Coord. Chem. Rev. 63, 241 (1985) in Google Scholar

[16] P. Chen, G. Hu, W. Wang, J. Song, L. Qiu, H. Wang, L. Chen, J. Zhang, L. Hu, J. Appl. Electrochem. 38, 1779 (2008) in Google Scholar

[17] G. Hu, L. Chen, J. Zhang, P. Chen, W. Wang, J. Song, L. Qiu, J. Song, L. Hu, Cent.Eur. J. Chem. 7, 291 (2009) in Google Scholar

[18] G. Hu, P. Chen, W. Wang, L. Hu, J. Song, L. Qiu, J. Song, Electrochimica Acta. 52, 7996 (2007) in Google Scholar

[19] L. Chen, G. Hu, J. Zhang, L. Hu, Mendeleev Communications 19, 1 (2009) in Google Scholar

[20] L. Chen, G. Hu, J. Zhang, L. Hu, J. Anal. Chem. 61, 1021 (2006) in Google Scholar

[21] G. Hu, Q. Wang, M. Meng, M.Y. Lu, F.S. Zhao, L. Hu, E-J. Chem. 9, 1412 (2012) in Google Scholar

[22] J.D. House, C.P. O’Connor, W. Guenter, J. Agr. Food. Chem. 51, 4461 (2003) in Google Scholar

[23] R. Jiménez-Prieto, M. Silva, D. Pérez-Bendito, Talanta 44, 1463 (1997) in Google Scholar

[24] W. Jiao-liang, L. Li-ping, L. Wang-ying, H. Bo, X. Gu-qing, Y. Zhi-fang, X. Ling, Chemistry Reagents 33, 138 (2011) Search in Google Scholar

[25] J.P. Maksimovic, L.Z. Kolar-Anic, S.R. Anic, D.D. Ribic, N.D. Pejic, J. Brazil. Chem. Soc. 22, 38 (2011) Search in Google Scholar

[26] N.F. Curtis, R.W. Hay, J. Chem. Soc. Chem. Commun. (London) 524 (1966) Search in Google Scholar

[27] R. Jiménez-Prieto, M. Silva, D. Pérez-Bendito, Anal. Chim. Acta. 334, 323 (1996) in Google Scholar

[28] E. Körös, M. Orban, Z. Nagy, J. Phys. Chem. 77, 3122 (1973) in Google Scholar

[29] S. Sen, S.S. Riaz, D.S. Ray, J. Theor. Biol. 250, 103 (2008) in Google Scholar PubMed

[30] T. Turanyi, L. Gyorgyi, R.J. Field, J. Phys. Chem. 97, 1931 (1993) in Google Scholar

[31] L. Gyorgyi, T. Turanyi, R.J. Field, J. Phys. Chem. 94, 7162 (1990) in Google Scholar

[32] N. Qingyun, L. Xing, J. China. Pharm. Univ. 19, 207 (1988) Search in Google Scholar

[33] S.V. Nipane, V.M. Gurame, G.S. Gokavi, Inorg. Chem. Commun. 14, 1102 (2011) in Google Scholar

Published Online: 2013-12-21
Published in Print: 2014-3-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 6.12.2022 from
Scroll Up Arrow