Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 16, 2014

Effects of dissolved metal chlorides on the behavior of silica nanoparticles in aqueous media

  • Vladimir Gun’ko EMAIL logo , Lyudmyla Andriyko , Vladimir Zarko , Andrij Marynin , Valentyn Olishevskyi and Wladyslaw Janusz
From the journal Open Chemistry

Abstract

Effects of chlorides of univalent (LiCl, NaCl, KCl), bivalent (MgCl2, BaCl2) and trivalent (AlCl3) metals at different concentration (0.001–0.1 M) on the behavior of nanosilica A-200 (0.5–5 wt.%) in aqueous media are analyzed using photon correlation spectroscopy (particle size distribution, PSD), electrophoresis (zeta potential ζ), potentiometric titration (surface charge density), and estimation of screening length of primary particles and their aggregates. The zeta potential and the PSD are affected by silica content, pH, and concentration and type of dissolved salts. Smaller but more strongly hydrated Li+ cations caused stronger nonlinear dependences of the zeta potential on pH and salt content than Na+ or K+. This nonlinearity is much stronger at a lower content of silica (0.5–1 wt.%) than at C A-200 = 2.5 or 5 wt.%. At a high concentration of nanosilica (5 wt.%) the effect of K+ ions causes stronger diminution of the negative value of the zeta potential due to better adsorption of larger cations. Therefore, the influence of K+ on increasing screening length is stronger than that of Na+ for both primary nanoparticles and their aggregates. A similar difference in the ζ values is observed for different in size cations Ba2+ and Mg2+.

[1] J. Lyklema, Fundamentals of interface and colloid science. Fundamentals (Academic Press, London, 1991) Vol. 1 Search in Google Scholar

[2] J. Lyklema, Fundamentals of Interface and Colloid Science. Solid-liquid interfaces (Academic Press, London, 1995) Vol. 2 Search in Google Scholar

[3] R.J. Hunter, Zeta Potential in Colloid Sciences (Academic Press, London, 1981) Search in Google Scholar

[4] R.J. Hunter, Foundations of Colloid Science (Oxford University Press, Oxford, 1989) Search in Google Scholar

[5] W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions (Cambridge University Press, Cambridge, 1992) Search in Google Scholar

[6] A.V. Delgado, F. Gonzalez-Caballero, R.J. Hunter, L.K. Koopal, J. Lyklema, Pure Appl. Chem. 77, 1753 (2005) http://dx.doi.org/10.1351/pac20057710175310.1351/pac200577101753Search in Google Scholar

[7] V.M. Gun’ko, V.I. Zarko, R. Leboda, E. Chibowski, Adv. Colloid Interface Sci. 91, 1 (2001) http://dx.doi.org/10.1016/S0001-8686(99)00026-310.1016/S0001-8686(99)00026-3Search in Google Scholar

[8] V.M. Gun’ko, V.V. Turov, Nuclear Magnetic Resonance Studies of Interfacial Phenomena (CRC Press, Boca Raton, 2013) http://dx.doi.org/10.1201/b1420210.1201/b14202Search in Google Scholar

[9] R.K. Iler, The Chemistry of Silica (Wiley, Chichester, 1979) Search in Google Scholar

[10] H. Ohshima, J. Colloid Interface Sci. 188, 481 (1997) http://dx.doi.org/10.1006/jcis.1997.479010.1006/jcis.1997.4790Search in Google Scholar

[11] H. Ohshima, J. Colloid Interface Sci. 195, 137 (1997) http://dx.doi.org/10.1006/jcis.1997.514610.1006/jcis.1997.5146Search in Google Scholar

[12] A.S. Dukhin, T.G.M. van der Ven, J. Colloid Interface Sci. 165, 9 (1994) http://dx.doi.org/10.1006/jcis.1994.120010.1006/jcis.1994.1200Search in Google Scholar

[13] E. Matijevich (Ed.), Surface and Colloid Science (Wiley, New York, 1974) Vol. 7 Search in Google Scholar

[14] S.S. Dukhin, Adv. Colloid Interface Sci. 44, 1 (1993) http://dx.doi.org/10.1016/0001-8686(93)80021-310.1016/0001-8686(93)80021-3Search in Google Scholar

[15] J. Bałdyga, Ł. Makowski, W. Orciuch, C. Sauter, H.P. Schuchmann, Chem. Eng. Res. Design 87, 474 (2009) http://dx.doi.org/10.1016/j.cherd.2008.12.01510.1016/j.cherd.2008.12.015Search in Google Scholar

[16] P. Ding, M.G. Orwa, A.W. Pacek, Powder Technology 195, 221 (2009) http://dx.doi.org/10.1016/j.powtec.2009.06.00310.1016/j.powtec.2009.06.003Search in Google Scholar

[17] I.N. Seekkuarachchi, K. Tanaka, H. Kumazawa, Chem. Eng. Sci. 63, 2341 (2008) http://dx.doi.org/10.1016/j.ces.2008.01.00410.1016/j.ces.2008.01.004Search in Google Scholar

[18] C. Batz-Sohn, Particle & Particle Systems Characterization 20, 370 (2003) http://dx.doi.org/10.1002/ppsc.20030085110.1002/ppsc.200300851Search in Google Scholar

[19] M. Kosmulski, Adv. Colloid Interface Sci. 171–172, 77 (2012) http://dx.doi.org/10.1016/j.cis.2012.01.00510.1016/j.cis.2012.01.005Search in Google Scholar

[20] M. Kosmulski, Adv. Colloid Interface Sci. 152, 14 (2009) http://dx.doi.org/10.1016/j.cis.2009.08.00310.1016/j.cis.2009.08.003Search in Google Scholar

[21] M. Kosmulski, J.B. Rosenholm, Adv. Colloid Interface Sci. 112, 93 (2004) http://dx.doi.org/10.1016/j.cis.2004.09.00510.1016/j.cis.2004.09.005Search in Google Scholar

[22] M. Kosmulski, Surface Charging and Points of Zero Charge (CRC Press, Boca Raton, FL, 2009) http://dx.doi.org/10.1201/978142005189610.1201/9781420051896Search in Google Scholar

[23] M. Kosmulski, Colloids Surf. A: Physicochem. Eng. Aspects 222, 113 (2003) http://dx.doi.org/10.1016/S0927-7757(03)00240-110.1016/S0927-7757(03)00240-1Search in Google Scholar

[24] M. Kosmulski, J. Colloid Interface Sci. 403, 43 (2013) http://dx.doi.org/10.1016/j.jcis.2013.04.03510.1016/j.jcis.2013.04.035Search in Google Scholar

[25] M. Kosmulski, J. Colloid Interface Sci. 298, 730 (2006) http://dx.doi.org/10.1016/j.jcis.2006.01.00310.1016/j.jcis.2006.01.003Search in Google Scholar

[26] M. Kosmulski, J. Colloid Interface Sci. 337, 439 (2009) http://dx.doi.org/10.1016/j.jcis.2009.04.07210.1016/j.jcis.2009.04.072Search in Google Scholar

[27] M. Kosmulski, E. Maczka, K. Marczewska-Boczkowska, J.B. Rosenholm, Marine Pollution Bull. 46, 120 (2003) http://dx.doi.org/10.1016/S0025-326X(02)00354-510.1016/S0025-326X(02)00354-5Search in Google Scholar

[28] R. Singhon, J. Husson, M. Knorr, B. Lakard, M. Euvrard, Colloids Surf. B: Biointerfaces 93, 1 (2012) http://dx.doi.org/10.1016/j.colsurfb.2011.12.03010.1016/j.colsurfb.2011.12.030Search in Google Scholar

[29] R. Castellani, A. Poulesquen, F. Goettmann, P. Marchal, L. Choplin, Colloids Surf. A: Physicochem. Eng. Aspects 430, 39 (2013) http://dx.doi.org/10.1016/j.colsurfa.2013.03.05610.1016/j.colsurfa.2013.03.056Search in Google Scholar

[30] T. Jesionowski, Colloids Surf. A: Physicochem. Eng. Aspects 222, 87 (2003) http://dx.doi.org/10.1016/S0927-7757(03)00237-110.1016/S0927-7757(03)00237-1Search in Google Scholar

[31] K. Schießl, F. Babick, M. Stintz, Advanced Powder Technology 23, 139 (2012) http://dx.doi.org/10.1016/j.apt.2011.01.00510.1016/j.apt.2011.01.005Search in Google Scholar

[32] U. Paik, J.Y. Kim, V.A. Hackley, Mater. Chem. Phys. 91, 205 (2005) http://dx.doi.org/10.1016/j.matchemphys.2004.11.01110.1016/j.matchemphys.2004.11.011Search in Google Scholar

[33] R. Mondragon, J.E. Julia, A. Barba, J.C. Jarque, Powder Technology 224, 138 (2012) http://dx.doi.org/10.1016/j.powtec.2012.02.04310.1016/j.powtec.2012.02.043Search in Google Scholar

[34] Y. Leong, Powder Technology 179, 38 (2007) http://dx.doi.org/10.1016/j.powtec.2006.11.00410.1016/j.powtec.2006.11.004Search in Google Scholar

[35] M. Schreier, T.E. Feltes, M.T. Schaal, J.R. Regalbuto, J. Colloid Interface Sci. 348, 571 (2010) http://dx.doi.org/10.1016/j.jcis.2010.04.06410.1016/j.jcis.2010.04.064Search in Google Scholar PubMed

[36] F.J. Rubio-Hernández, M.F. Ayúcar-Rubio, J.F. Velázquez-Navarro, F.J. Galindo-Rosales, J. Colloid Interface Sci. 298, 967 (2006) http://dx.doi.org/10.1016/j.jcis.2006.01.00910.1016/j.jcis.2006.01.009Search in Google Scholar PubMed

[37] Y.K. Leong, J. Colloid Interface Sci. 292, 557 (2005) http://dx.doi.org/10.1016/j.jcis.2005.06.00410.1016/j.jcis.2005.06.004Search in Google Scholar PubMed

[38] S. Allison, J. Colloid Interface Sci. 277, 248 (2004) http://dx.doi.org/10.1016/j.jcis.2004.04.05010.1016/j.jcis.2004.04.050Search in Google Scholar

[39] W.H. Kuan, S.L. Lo, M.K. Wang, J. Colloid Interface Sci. 272, 489 (2004) http://dx.doi.org/10.1016/j.jcis.2003.12.03410.1016/j.jcis.2003.12.034Search in Google Scholar

[40] W. Janusz, J. Patkowski, S. Chibowski, J. Colloid Interface Sci. 266, 259 (2003) http://dx.doi.org/10.1016/S0021-9797(03)00469-710.1016/S0021-9797(03)00469-7Search in Google Scholar

[41] W. Janusz, M. Matysek, J. Colloid Interface Sci. 296, 22 (2006) http://dx.doi.org/10.1016/j.jcis.2005.08.06710.1016/j.jcis.2005.08.067Search in Google Scholar

[42] R. Charmas, W. Rudzinski, W. Piasecki, B. Prelot, F. Thomas, F. Villieras, W. Janusz, Appl. Surf. Sci. 196, 331 (2002) http://dx.doi.org/10.1016/S0169-4332(02)00071-510.1016/S0169-4332(02)00071-5Search in Google Scholar

[43] S. Chibowski, W. Janusz, Appl. Surf. Sci. 196, 343 (2002) http://dx.doi.org/10.1016/S0169-4332(02)00072-710.1016/S0169-4332(02)00072-7Search in Google Scholar

[44] M. Barczak, E. Skwarek, W. Janusz, A. Dąbrowski, S. Pikus, Appl. Surf. Sci. 256, 5370 (2010) http://dx.doi.org/10.1016/j.apsusc.2009.12.08210.1016/j.apsusc.2009.12.082Search in Google Scholar

[45] V.M. Gun’ko, A.V. Klyueva, Yu.N. Levchuk, R. Leboda, Adv. Colloid Interface Sci. 105, 201 (2003) http://dx.doi.org/10.1016/S0001-8686(03)00091-510.1016/S0001-8686(03)00091-5Search in Google Scholar

[46] M.F. Chaplin, What is liquid water, Science in Society 58, 41 (2013) Search in Google Scholar

[47] W. Kunz (Ed.), Specific Ion Effects (World Scientific Publishing Co. Pte. Ltd., Singapore, 2009) Search in Google Scholar

[48] K.D. Collins, Methods 34, 300 (2004) http://dx.doi.org/10.1016/j.ymeth.2004.03.02110.1016/j.ymeth.2004.03.021Search in Google Scholar PubMed

[49] J.B. Robinson Jr., J.M. Strottmann, E. Stellwagen, Proc. Natl. Acad. Sci. USA 78, 2287 (1981) http://dx.doi.org/10.1073/pnas.78.4.228710.1073/pnas.78.4.2287Search in Google Scholar PubMed PubMed Central

[50] A.T. Chan, J.A. Lewis, Langmuir 21, 8576 (2005) http://dx.doi.org/10.1021/la051007310.1021/la0510073Search in Google Scholar PubMed

[51] V.M. Gun’ko, et al., Appl. Surf. Sci. 253, 3215 (2007) http://dx.doi.org/10.1016/j.apsusc.2006.07.01310.1016/j.apsusc.2006.07.013Search in Google Scholar

[52] V.M. Gun’ko, et al., Colloids Surf. A: Physicochem. Eng. Aspects 240, 9 (2004) http://dx.doi.org/10.1016/j.colsurfa.2004.03.01410.1016/j.colsurfa.2004.03.014Search in Google Scholar

[53] V.M. Gun’ko, et al., J. Colloid Interface Sci. 289, 427 (2005) http://dx.doi.org/10.1016/j.jcis.2005.05.05110.1016/j.jcis.2005.05.051Search in Google Scholar PubMed

[54] P.M. Dove, C.M. Craven, Geochimica et Cosmochimica Acta 69, 4963 (2005) http://dx.doi.org/10.1016/j.gca.2005.05.00610.1016/j.gca.2005.05.006Search in Google Scholar

[55] P. Leroy, N. Devau, A. Revil, M. Bizi, Journal of Colloid and Interface Science 410, 81 (2013) http://dx.doi.org/10.1016/j.jcis.2013.08.01210.1016/j.jcis.2013.08.012Search in Google Scholar PubMed

[56] A. Amiri, G. Øye, J. Sjöblom, Colloids and Surfaces A: Physicochem. Eng. Aspects 349, 43 (2009) http://dx.doi.org/10.1016/j.colsurfa.2009.07.05010.1016/j.colsurfa.2009.07.050Search in Google Scholar

[57] R. Mondragon, J.E. Julia, A. Barba, J.C. Jarque, Powder Technology 224, 138 (2012) http://dx.doi.org/10.1016/j.powtec.2012.02.04310.1016/j.powtec.2012.02.043Search in Google Scholar

[58] L. Peng, W. Qisui, L. Xi, Z. Chaocan, Powder Technology 193, 46 (2009) http://dx.doi.org/10.1016/j.powtec.2009.02.00610.1016/j.powtec.2009.02.006Search in Google Scholar

[59] A.T. Chan, J.A. Lewis, Langmuir 24, 11399 (2008) http://dx.doi.org/10.1021/la800422g10.1021/la800422gSearch in Google Scholar PubMed

Published Online: 2014-1-16
Published in Print: 2014-4-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-013-0386-1/html
Scroll to top button