Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 21, 2013

Solid contact Zn2+ -selective electrode with low detection limit and stable and reversible potential

  • Cecylia Wardak EMAIL logo
From the journal Open Chemistry


A new solid contact Zn2+ polyvinylchloride membrane sensor with 2-(2-Hydroxy-1-naphthylazo)-1,3,4 -thiadiazole as an ionophore has been prepared. For the electrode construction, ionic liquids, alkylmethylimidazolium chlorides are used as transducer media and as a lipophilic ionic membrane component. The addition of ionic liquid to the membrane phase was found to reduce membrane resistance and determine the potential of an internal reference Ag/AgCl electrode. The electrode with the membrane composition: ionophore: PVC: o-NPOE: ionic liquid in the percentage ratio of (wt.) 1:30:66:3, respectively, exhibited the best performance, having a slope of 29.8 mV decade−1 in the concentration range 3×10−7–1×10−1 M. The detection limit is 6.9×10−8 M. It has a fast response time of 5–7 s and exhibits stable and reproducible potential. It has a fast response time of 5–7 s and exhibits stable and reproducible potential, which does not depend on pH in the range 3.8–8.0. The proposed sensor shows a good and satisfactory selectivity towards Zn2+ ion in comparison with other cations including alkali, alkaline earth, transition and heavy metal ions. It was successfully applied for direct determination of zinc ions in tap water and as an indicator electrode in potentiometric titration of Zn2+ ions with EDTA.

[1] R. W. Hay, Bio-Inorganic Chemistry (Panstwowe Wydawnictwo Naukowe, Warszawa, 1990) 13–14, 99 Search in Google Scholar

[2] Zinc in Drinking Water, Guidelines for drinking — water quality, 2nd edition, Vol. 2: Health criteria and other supporting information (Word Health Organization, Geneva 1996) 1–3 Search in Google Scholar

[3] H.H. Sandstead, W. Au, In: G.F. Nordberg, B.A. Fowler, M. Nordberg, L.T. Friberg (Eds.), Handbook on the Toxicology of Metals, 3rd edition (Academic Press Elsevier, Amsterdam, 2007) 925 Search in Google Scholar

[4] J. Chen, K.Ch. Teo, Anal. Chim. Acta 450, 215 (2001) in Google Scholar

[5] J. Ma, J. Zhang, X. Du, X. Lei, J. Li, Microchim. Acta 168, 153 (2010) in Google Scholar

[6] V.K. Jain, H. C. Mandalia, H.S. Gupte, D. J. Vyas, Talanta 79, 1331(2009) in Google Scholar PubMed

[7] P. Kuar, S. Kaur, A. Mahajan, K. Singh, Inorg. Chem. Commun. 11, 626 (2008) in Google Scholar

[8] Q.-J. Ma, X.B. Zhang, Z.X. Han, B. Huang, Q. Jiang, G.-L. Shen, R.-Q. Yu, Int. J. Environ. An. Chem. 91, 74 (2011) in Google Scholar

[9] P. Wilhartitz, S. Dreer, R. Krismer, O. Bobleter, Microchim. Acta 125, 45 (1997) in Google Scholar

[10] E. Czop, A. Economou, A. Bobrowski, Electrochim. Acta 56, 2206 (2011) in Google Scholar

[11] M.B. Gholivand, A. Azadbakht, A. Pashabadi, Electroanal. 23, 364 (2011) in Google Scholar

[12] Z. Kormosh, I. Hunka, Y. Bazel, A. Laganovsky, I. Mazurenko, N. Kormosh, Cent. Eur. J. Chem. 5, 813 (2007) in Google Scholar

[13] C. Wardak, Cent. Eur. J. Chem. 6, 607 (2008) in Google Scholar

[14] R. De Marco, G. Clarke, B. Pejcic, Electroanal. 19, 1987 (2007). in Google Scholar

[15] J. Sutter, A. Radu, S. Peper, E. Bakker, E. Pretsch, Anal. Chim. Acta 523, 53 (2004) in Google Scholar

[16] E. Pretsch, Trends Anal. Chem. 26, 46 (2007) in Google Scholar

[17] R. W. Catrall, H. Freiser, Anal. Chem. 43, 1905 (1971) in Google Scholar

[18] R. W. Catrall, D. W. Drew, I.C. Hamilton, Anal. Chim. Acta 76, 269 (1975) in Google Scholar

[19] P.C. Hauser, D. W.L. Chiang, G.A. Wright, Anal. Chim. Acta 302, 241 (1995) in Google Scholar

[20] M. Fibbioli, W.E. Morf, M. Badertscher, N.F. De Rooij, E. Pretsch, Electroanal. 12, 1286 (2000)<1286::AID-ELAN1286>3.0.CO;2-Q10.1002/1521-4109(200011)12:16<1286::AID-ELAN1286>3.0.CO;2-QSearch in Google Scholar

[21] T. Lindfors, J. Solid State Electrochem. 13, 77 (2009) in Google Scholar

[22] J. Sutter, E. Lindner, R.E. Gyurcsányi, E. Pretsch, Anal. Bioanal. Chem. 380, 7 (2004) 10.1007/s00216-004-2737-4Search in Google Scholar

[23] J. Bobacka, Electroanal. 18, 7 (2006) in Google Scholar

[24] J. Migdalski, T. Blaz, A. Lewenstam, Anal. Chim. Acta 322, 141 (1996) in Google Scholar

[25] A. Konopka, T. Sokalski, A. Michalska, A. Lewenstam, M. Maj-Zurawska, Anal. Chem. 76, 6410 (2004) in Google Scholar PubMed

[26] R.E. Gyurcsanyi, N. Rangisetty, S. Clifton, B.D. Pendley, E. Lindner, Talanta 63, 89 (2004) in Google Scholar PubMed

[27] E. Grygolowicz-Pawlak, K. Plachecka, Z. Brzózka, E. Malinowska, Sens. Actuat. B-Chem. 123, 480 (2007) in Google Scholar

[28] M. Fibbioli, K. Bandyopadhyay, S.G. Liu, L. Echogoyen, O. Enger, F. Diederich, P. Buhlmann, E. Pretsch, Chem. Commun. 339 (2000) 10.1039/a909532bSearch in Google Scholar

[29] R.J. Soukup-Hein, M.M. Warnke, D. W. Armstrong, Annu. Rev. Anal. Chem. 2, 145 (2009) in Google Scholar PubMed

[30] P. Sun, D. W. Armstrong, Anal. Chim. Acta 661, 1 (2010) in Google Scholar PubMed

[31] D. Wei, A. Ivaska Anal. Chim. Acta 607, 126 (2008) in Google Scholar PubMed

[32] R. Liu, J.F. Liu, Y.G. Yin, X.L. Hu, G.B. Jiang, Anal. Bioanal. Chem. 393, 871 (2009) in Google Scholar PubMed

[33] C. Wardak J. Lenik and B. Marczewska, Pol. J. Chem. 82, 223 (2008) Search in Google Scholar

[34] C. Wardak, Int. J. Environ. An. Ch. 89, 735 (2009) in Google Scholar

[35] C. Wardak, J. Hazar. Mater. 186, 1131 (2011) in Google Scholar PubMed

[36] N.V. Shvedene, A.V. Rzhevskaia, I.V. Pletnev, Talanta 102, 123 (2012) in Google Scholar PubMed

[37] N.V. Shvedene, S.A. Krasnov, M.Yu. Nemilova, A.V. Grigor’eva, K.M. Sotnezova, I.V. Pletnev, J. Anal. Chem. 67, 834 (2012) in Google Scholar

[38] N.V. Shvedene, D.V. Chernyshov, M.G. Khrenova, A.A. Formanovsky, V.E. Baulin, I.V. Pletnev, Electroanal. 18, 1416 (2006) in Google Scholar

[39] D. Cicmil, S. Anastasova, A. Kavanagh, D. Diamond, U. Mattinen, J. Bobacka, A. Lewenstam, A. Radu, Electroanal. 23, 1881 (2011) in Google Scholar

[40] R. Dumkiewicz, C. Wardak, S. Zareba, Analyst 125, 527 (2000) in Google Scholar

[41] R. Dumkiewicz, K. Sykut, C. Wardak, Chem. Anal.-Warsaw 45, 383 (2000) Search in Google Scholar

[42] C. Wardak, Sensor Lett. 10, 1000 (2012) in Google Scholar

[43] C. Wardak, Electroanal. 24, 85 (2012) in Google Scholar

[44] T. Sokalski, T. Zwickl, E. Bakker, E. Pretsch, Anal. Chem. 71, 1204 (1999) in Google Scholar

[45] E. Bakker, P. Bühlmann, E. Pretsch, Chem. Rev. 97, 3083 (1997) in Google Scholar PubMed

[46] A. Konopka, T. Sokalski, A. Lewenstam, M. Maj-Zurawska, Electroanal. 18, 2232 (2006) in Google Scholar

[47] K.Y. Chumbimuni-Torres, N. Rubinova, A. Radu, L.T. Kubota, E. Bakker, Anal. Chem. 78, 1318 (2006) in Google Scholar PubMed PubMed Central

[48] E. Bakker, E. Pretsch, P. Bühlman, Anal. Chem. 72, 1127 (2000) in Google Scholar PubMed

[49] R.P. Buck, E. Lindner, Pure & App. Chem. 66, 2527 (1994) in Google Scholar

[50] G. Horvai, E. Gráf, K. Tóth, E. Pungor, R.P. Buck, Anal. Chem. 58, 2735 (1986) in Google Scholar

[51] E. Lindner, R.E. Gyurcsányi, J. Solid State Electrochem. 13, 51 (2009) in Google Scholar

[52] V.K. Gupta, D.K. Chauhan, V.K. Saini, S. Agarwal, M.M. Antonijevic, H. Lang, Sensors 3, 223 (2003) in Google Scholar

[53] V.K. Gupta, S. Agarwal, A. Jacob, H. Lang, Sens. Actuat. B-Chem. 114, 812 (2006) in Google Scholar

[54] V.K. Gupta, R.N. Goyal, A. Al Khayat, P. Kumar, N. Bachheti, Talanta 69, 1149 (2006) in Google Scholar PubMed

[55] A.K. Singh, S. Mehtab, U.P. Singh, V. Aggarwal, Anal. Bioanal. Chem. 388, 1867 (2007) in Google Scholar PubMed

[56] M. Hosseini, S. Dehghan Abkenar, M.R. Ganjali, F. Faridbod, Mat. Sci. Eng. C, 31, 428 (2011) in Google Scholar

[57] P. Singh, A.K. Singh, A.K. Jain, Electrochim. Acta 56, 5386 (2011) in Google Scholar

[58] R. Ansari, A.F. Delavar, A. Mohammad-Khah, J. Solid State Electrochem. 16, 3315 (2012) in Google Scholar

Published Online: 2013-12-21
Published in Print: 2014-3-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 2.12.2023 from
Scroll to top button