Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 30, 2014

Synthesis and characterization of ZnO nanostructures obtained in mixtures of ionic liquids with organic solvents

  • Ovidiu Oprea EMAIL logo , Oana Ciocirlan , Alina Badanoiu and Eugeniu Vasile
From the journal Open Chemistry


ZnO nanoparticles were synthesized in mixtures of ionic liquids based on imidazolium cation with organic solvents (dimethyl sulfoxide and ethylene glycol) by a simple, one-step solution route at low temperature. The effect of these mixtures on the morphology, size and properties of as obtained ZnO nanopowders was investigated. The obtained nanopowders have been characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), UV-Vis absorption spectroscopy (UV-Vis) and photoluminescence (PL). The effect of the ionic liquid mixture on the photocatalytic degradation of methylene blue has been analysed. The XRD studies confirmed the hexagonal wurtzite structure of the obtained ZnO powder. The UV-Vis absorption spectra present the typical shape for ZnO, with a broad band situated in the UV region, with the maximum around 360 nm. The calculated band-gap energy is in interval 3.25–3.28 eV. The synthesized ZnO nanopowders have high photocatalytic activity against methylene blue, the best results being obtained when 1-ethyl-3-methylimidazolium tetrafluoroborate was used as the solvent.

[1] Y. Zhou, M. Antonietti, J. Am. Chem. Soc. 125, 14960 (2003) in Google Scholar PubMed

[2] T. Nakashima, N. Kimizuka, J. Am. Chem. Soc. 125, 6386 (2003) in Google Scholar PubMed

[3] M. Antonietti, D. Kuang, B. Smarsly, Y. Zhou, Angew. Chem. Int. Ed. 43, 4988 (2004) in Google Scholar PubMed

[4] Z. Durmus, H. Kavas, A. Baykal, M.S. Toprak, Cent. Eur. J. Chem. 7, 555 (2009) in Google Scholar

[5] H. Morkoc, U. Ozgur, Zinc Oxide: fundamentals, materials and device technology (Wiley-VCH, Weinheim, 2009) in Google Scholar

[6] V.A. Coleman, C. Jagadish, In: C. Jagadish, S. Pearton (Eds.), Zinc Oxide bulk, thin films and nanostructures (Elsevier, Oxford, 2006) 1–20 10.1016/B978-008044722-3/50001-4Search in Google Scholar

[7] V. Kumari, V. Kumar, B.P. Malik, D. Mohan, R.M. Mehra, J. Nan-Electron Phys. 3, 601 (2011) Search in Google Scholar

[8] O. Gunduz, E.M. Erkan, S. Daglilar, S. Salman, S. Agathopoulos, F.N. Oktar, J. Mater. Sci. 43, 2536 (2008) in Google Scholar

[9] H.B. Jin, F.N. Oktar, S.V. Dorozhkin, S. Agathopoulos, J. Compos. Mater. 45, 1435 (2011) in Google Scholar

[10] F. Jitaru, T. Buruiana, G. Hitruc, E.C. Buruiana, Cent. Eur. J. Chem 11, 1492 (2013) in Google Scholar

[11] A. Badanoiu, J. Paceagiu, G. Voicu, J. Therm. Anal. Calorim. 103, 879 (2011) in Google Scholar

[12] F. Vaja (Dumitru), C. Comanescu, O. Oprea, D. Ficai, C. Guran, Rev. Chim.-Bucharest 63, 722 (2012) Search in Google Scholar

[13] O. Oprea, O.R. Vasile, G. Voicu, L. Craciun, E. Andronescu, Dig. J. Nanomater. Bios. 7, 1757 (2012) Search in Google Scholar

[14] G. Voicu, O. Oprea, B.S. Vasile, E. Andronescu, Dig. J. Nanomater. Bios. 8, 667 (2013) Search in Google Scholar

[15] N. Kaneva, I. Stambolova, V. Blaskov, A. Eliyas, S Vassilev, Cent. Eur. J. Chem. 11, 1055 (2013) in Google Scholar

[16] O. Oprea, E. Andronescu, B.S. Vasile, G. Voicu, C. Covaliu, Dig. J. Nanomater. Bios. 6, 1393 (2011) Search in Google Scholar

[17] S. Xu, Z.L. Wang, Nano Res. 4, 1013 (2011) in Google Scholar

[18] J.-Y. Dong, W.-H. Lin, Y.-J. Hsu, D. Shan-Hill Wong, S.-Y. Lu, Cryst. Eng. Comm. 13, 6218 (2011) in Google Scholar

[19] O.R. Vasile, E. Andronescu, C. Ghitulica, B.S. Vasile, O. Oprea, E. Vasile, R. Trusca, J. Nanopart. Res. 14, 1269 (2012) in Google Scholar

[20] Z. L. Wang, J. Phys: Condens. Matter. 16, R829 (2004) 10.1088/0953-8984/16/25/R01Search in Google Scholar

[21] K. Qi, J. Yang, J. Fu, G. Wang, L. Zhu, G. Liu, W. Zheng, Cryst. Eng. Comm. 15, 6729 (2013) in Google Scholar

[22] J. Wang, J. Cao, B. Fang, P. Lu, S. Deng, H. Wang, Mater. Lett. 59, 1405 (2005) in Google Scholar

[23] L. Wang, L. Chang, B. Zhao, Z. Yuan, G. Shao, W. Zheng, Inorg. Chem. 47, 1443 (2008) in Google Scholar PubMed

[24] M. Movahedi, E. Kowsari, A.R. Mahjoub, I. Yavari, Mater. Lett. 62, 3856 (2008) in Google Scholar

[25] E.K. Goharshadi, Y. Ding, P. Nancarrow, J. Phys. Chem.Solids 69, 2057 (2008) in Google Scholar

[26] I. Yavari, A. R. Mahjoub, E. Kowsari, M. Movahedi, J. Nanopart. Res. 11, 861 (2009) in Google Scholar

[27] M. Sabbaghan, A.S. Shahvelayati, S.E. Bashtani, Solid State Sci. 14, 1191 (2012) in Google Scholar

[28] R. Gandhi, S. Gowri, J. Suresh, M. Sundrarajan, J. Mater. Sci. Technol. 29, 533 (2013) in Google Scholar

[29] K.R. Seddon, A. Stark, M.J. Torres, Pure Appl. Chem. 72, 2275 (2000) in Google Scholar

[30] A. Stoppa, J. Hunger, R. Buchner, J. Chem. Eng. Data 54, 472 (2009) in Google Scholar

[31] E. Rilo, J. Vila, J. Pico, S. Garcia-Garabal, L. Segade, L.M. Varela, O. Cabeza, Chem. Eng. Data 55, 639 (2012) in Google Scholar

[32] O. Ciocirlan, O. Croitoru, O. Iulian, J. Chem. Eng. Data 56, 1526 (2011) in Google Scholar

[33] O. Iulian, O. Ciocirlan, J. Chem. Eng. Data 57, 2640 (2012) in Google Scholar

[34] C.W. Yao, H.P. Wu, M.Y. Ge, L. Yang, Y.W. Zeng, Y.W. Wang, Z.J. Jiang, Mater. Lett. 61, 3416 (2007) in Google Scholar

[35] G. Kortum, Reflectance Spectroscopy (Springer-Verlag, New York, 1969) in Google Scholar

[36] O. Oprea, O.R. Vasile, G. Voicu, E. Andronescu, Dig. J. Nanomater. Bios. 8, 747 (2013) Search in Google Scholar

[37] B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943 (2001) in Google Scholar

Published Online: 2014-4-30
Published in Print: 2014-7-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 6.12.2023 from
Scroll to top button