Abstract
ZnO nanoparticles were synthesized in mixtures of ionic liquids based on imidazolium cation with organic solvents (dimethyl sulfoxide and ethylene glycol) by a simple, one-step solution route at low temperature. The effect of these mixtures on the morphology, size and properties of as obtained ZnO nanopowders was investigated. The obtained nanopowders have been characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), UV-Vis absorption spectroscopy (UV-Vis) and photoluminescence (PL). The effect of the ionic liquid mixture on the photocatalytic degradation of methylene blue has been analysed. The XRD studies confirmed the hexagonal wurtzite structure of the obtained ZnO powder. The UV-Vis absorption spectra present the typical shape for ZnO, with a broad band situated in the UV region, with the maximum around 360 nm. The calculated band-gap energy is in interval 3.25–3.28 eV. The synthesized ZnO nanopowders have high photocatalytic activity against methylene blue, the best results being obtained when 1-ethyl-3-methylimidazolium tetrafluoroborate was used as the solvent.
[1] Y. Zhou, M. Antonietti, J. Am. Chem. Soc. 125, 14960 (2003) http://dx.doi.org/10.1021/ja038099810.1021/ja0380998Search in Google Scholar PubMed
[2] T. Nakashima, N. Kimizuka, J. Am. Chem. Soc. 125, 6386 (2003) http://dx.doi.org/10.1021/ja034954b10.1021/ja034954bSearch in Google Scholar PubMed
[3] M. Antonietti, D. Kuang, B. Smarsly, Y. Zhou, Angew. Chem. Int. Ed. 43, 4988 (2004) http://dx.doi.org/10.1002/anie.20046009110.1002/anie.200460091Search in Google Scholar PubMed
[4] Z. Durmus, H. Kavas, A. Baykal, M.S. Toprak, Cent. Eur. J. Chem. 7, 555 (2009) http://dx.doi.org/10.2478/s11532-009-0049-410.2478/s11532-009-0049-4Search in Google Scholar
[5] H. Morkoc, U. Ozgur, Zinc Oxide: fundamentals, materials and device technology (Wiley-VCH, Weinheim, 2009) http://dx.doi.org/10.1002/978352762394510.1002/9783527623945Search in Google Scholar
[6] V.A. Coleman, C. Jagadish, In: C. Jagadish, S. Pearton (Eds.), Zinc Oxide bulk, thin films and nanostructures (Elsevier, Oxford, 2006) 1–20 10.1016/B978-008044722-3/50001-4Search in Google Scholar
[7] V. Kumari, V. Kumar, B.P. Malik, D. Mohan, R.M. Mehra, J. Nan-Electron Phys. 3, 601 (2011) Search in Google Scholar
[8] O. Gunduz, E.M. Erkan, S. Daglilar, S. Salman, S. Agathopoulos, F.N. Oktar, J. Mater. Sci. 43, 2536 (2008) http://dx.doi.org/10.1007/s10853-008-2497-110.1007/s10853-008-2497-1Search in Google Scholar
[9] H.B. Jin, F.N. Oktar, S.V. Dorozhkin, S. Agathopoulos, J. Compos. Mater. 45, 1435 (2011) http://dx.doi.org/10.1177/002199831038372810.1177/0021998310383728Search in Google Scholar
[10] F. Jitaru, T. Buruiana, G. Hitruc, E.C. Buruiana, Cent. Eur. J. Chem 11, 1492 (2013) http://dx.doi.org/10.2478/s11532-013-0272-x10.2478/s11532-013-0272-xSearch in Google Scholar
[11] A. Badanoiu, J. Paceagiu, G. Voicu, J. Therm. Anal. Calorim. 103, 879 (2011) http://dx.doi.org/10.1007/s10973-010-1125-x10.1007/s10973-010-1125-xSearch in Google Scholar
[12] F. Vaja (Dumitru), C. Comanescu, O. Oprea, D. Ficai, C. Guran, Rev. Chim.-Bucharest 63, 722 (2012) Search in Google Scholar
[13] O. Oprea, O.R. Vasile, G. Voicu, L. Craciun, E. Andronescu, Dig. J. Nanomater. Bios. 7, 1757 (2012) Search in Google Scholar
[14] G. Voicu, O. Oprea, B.S. Vasile, E. Andronescu, Dig. J. Nanomater. Bios. 8, 667 (2013) Search in Google Scholar
[15] N. Kaneva, I. Stambolova, V. Blaskov, A. Eliyas, S Vassilev, Cent. Eur. J. Chem. 11, 1055 (2013) http://dx.doi.org/10.2478/s11532-013-0240-510.2478/s11532-013-0240-5Search in Google Scholar
[16] O. Oprea, E. Andronescu, B.S. Vasile, G. Voicu, C. Covaliu, Dig. J. Nanomater. Bios. 6, 1393 (2011) Search in Google Scholar
[17] S. Xu, Z.L. Wang, Nano Res. 4, 1013 (2011) http://dx.doi.org/10.1007/s12274-011-0160-710.1007/s12274-011-0160-7Search in Google Scholar
[18] J.-Y. Dong, W.-H. Lin, Y.-J. Hsu, D. Shan-Hill Wong, S.-Y. Lu, Cryst. Eng. Comm. 13, 6218 (2011) http://dx.doi.org/10.1039/c1ce05503h10.1039/c1ce05503hSearch in Google Scholar
[19] O.R. Vasile, E. Andronescu, C. Ghitulica, B.S. Vasile, O. Oprea, E. Vasile, R. Trusca, J. Nanopart. Res. 14, 1269 (2012) http://dx.doi.org/10.1007/s11051-012-1269-710.1007/s11051-012-1269-7Search in Google Scholar
[20] Z. L. Wang, J. Phys: Condens. Matter. 16, R829 (2004) 10.1088/0953-8984/16/25/R01Search in Google Scholar
[21] K. Qi, J. Yang, J. Fu, G. Wang, L. Zhu, G. Liu, W. Zheng, Cryst. Eng. Comm. 15, 6729 (2013) http://dx.doi.org/10.1039/c3ce27007f10.1039/c3ce27007fSearch in Google Scholar
[22] J. Wang, J. Cao, B. Fang, P. Lu, S. Deng, H. Wang, Mater. Lett. 59, 1405 (2005) http://dx.doi.org/10.1016/j.matlet.2004.11.06210.1016/j.matlet.2004.11.062Search in Google Scholar
[23] L. Wang, L. Chang, B. Zhao, Z. Yuan, G. Shao, W. Zheng, Inorg. Chem. 47, 1443 (2008) http://dx.doi.org/10.1021/ic701094a10.1021/ic701094aSearch in Google Scholar PubMed
[24] M. Movahedi, E. Kowsari, A.R. Mahjoub, I. Yavari, Mater. Lett. 62, 3856 (2008) http://dx.doi.org/10.1016/j.matlet.2008.05.00210.1016/j.matlet.2008.05.002Search in Google Scholar
[25] E.K. Goharshadi, Y. Ding, P. Nancarrow, J. Phys. Chem.Solids 69, 2057 (2008) http://dx.doi.org/10.1016/j.jpcs.2008.03.00210.1016/j.jpcs.2008.03.002Search in Google Scholar
[26] I. Yavari, A. R. Mahjoub, E. Kowsari, M. Movahedi, J. Nanopart. Res. 11, 861 (2009) http://dx.doi.org/10.1007/s11051-008-9485-x10.1007/s11051-008-9485-xSearch in Google Scholar
[27] M. Sabbaghan, A.S. Shahvelayati, S.E. Bashtani, Solid State Sci. 14, 1191 (2012) http://dx.doi.org/10.1016/j.solidstatesciences.2012.05.03410.1016/j.solidstatesciences.2012.05.034Search in Google Scholar
[28] R. Gandhi, S. Gowri, J. Suresh, M. Sundrarajan, J. Mater. Sci. Technol. 29, 533 (2013) http://dx.doi.org/10.1016/j.jmst.2013.03.00710.1016/j.jmst.2013.03.007Search in Google Scholar
[29] K.R. Seddon, A. Stark, M.J. Torres, Pure Appl. Chem. 72, 2275 (2000) http://dx.doi.org/10.1351/pac20007212227510.1351/pac200072122275Search in Google Scholar
[30] A. Stoppa, J. Hunger, R. Buchner, J. Chem. Eng. Data 54, 472 (2009) http://dx.doi.org/10.1021/je800468h10.1021/je800468hSearch in Google Scholar
[31] E. Rilo, J. Vila, J. Pico, S. Garcia-Garabal, L. Segade, L.M. Varela, O. Cabeza, Chem. Eng. Data 55, 639 (2012) http://dx.doi.org/10.1021/je900600c10.1021/je900600cSearch in Google Scholar
[32] O. Ciocirlan, O. Croitoru, O. Iulian, J. Chem. Eng. Data 56, 1526 (2011) http://dx.doi.org/10.1021/je101206u10.1021/je101206uSearch in Google Scholar
[33] O. Iulian, O. Ciocirlan, J. Chem. Eng. Data 57, 2640 (2012) http://dx.doi.org/10.1021/je300316a10.1021/je300316aSearch in Google Scholar
[34] C.W. Yao, H.P. Wu, M.Y. Ge, L. Yang, Y.W. Zeng, Y.W. Wang, Z.J. Jiang, Mater. Lett. 61, 3416 (2007) http://dx.doi.org/10.1016/j.matlet.2006.11.09410.1016/j.matlet.2006.11.094Search in Google Scholar
[35] G. Kortum, Reflectance Spectroscopy (Springer-Verlag, New York, 1969) http://dx.doi.org/10.1007/978-3-642-88071-110.1007/978-3-642-88071-1Search in Google Scholar
[36] O. Oprea, O.R. Vasile, G. Voicu, E. Andronescu, Dig. J. Nanomater. Bios. 8, 747 (2013) Search in Google Scholar
[37] B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943 (2001) http://dx.doi.org/10.1063/1.139417310.1063/1.1394173Search in Google Scholar
© 2014 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.