Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 30, 2014

New vitreous matrix for chromium waste immobilization

Ioan Lazău and Cosmin Vancea
From the journal Open Chemistry


Common waste glasses (window, bottle glass or tableware) with fly ash form a glass matrix for chromium waste immobilization. Soluble chromium from residual waters was adsorbed on fly ash; the resulting solid contained 23.7% Cr6+. The three glass wastes, chromium-containing fly ash, and borax were used to make glasses in weight ratios waste glass: borax: fly ash of 1: 1: 1 and 1.5: 0.5: 1. The hydrolytic stability ranged from 18.46 to 28.13 µg g−1 soluble Na2O, qualifying them in the HGB1 class. The chemical stability, characterized by the dissolution rate, was 0.011–0.077 µg cm−2 h−1, depending on the glass composition and the aggressive medium pH. The chromium leachability is influnced by the glass composition and the pH of the leaching solution, ranging between 0–0.015% of the total chromium. Chromium waste vitrification is a viabile solution with multiple economic advantages.

[1] T. Basegio, A.P. Beck Leão, A.M. Bernardes, C.P. Bergmann, J. Hazard. Mater. 165, 604 (2009) in Google Scholar

[2] P. Colombo, G. Brusatin, E. Bernardo, G. Scarinci, Curr. Opin. Solid State Mater. Sci. 7(3), 225 (2003) in Google Scholar

[3] R. Gutman, Glastech. Ber. Glass Sci. Technol. 69(9), 223 (1996) Search in Google Scholar

[4] K. Al-Zboona, M.S. Al-Harahshehb, F.B. Hania, J. Hazard. Mater. 188, 414 (2011) in Google Scholar

[5] L. Barbieri, A.C. Bonamartini, I. Lancellotti, J. Eur. Ceram. Soc. 20, 2477 (2000) in Google Scholar

[6] P. Kavouras, G. Kaimakamis, Th.A. Ioannidis, Th. Kehagias, Ph. Komninou, S. Kokkou, E. Pavlidou, I. Antonopoulos, M. Sofoniou, A. Zouboulis, C.P. Hadjiantoniou, G. Nouet, A. Prakouras, Th. Karakostas, Waste Manage 23, 361 (2003) in Google Scholar

[7] M.J. McCarthy, R.K. Dhir, Fuel 84, 1423 (2005) in Google Scholar

[8] A. Duran-Herrera, C.A. Juarez, P. Valdez, D.P. Bentz, Cem. Concr. Compos. 33(1), 39 (2011) in Google Scholar

[9] Vitrification technologies for treatment of Hazardous and radioactive wastes, Handbook, EPA/625/R-92/002 (US EPA, Cincinnati, Ohio, 1992) Search in Google Scholar

[10] E. Bernardo, M. Varrasso, F. Cadamuro, S. Hreglich, J. Non-Cryst. Solids 352, 4017 (2006) in Google Scholar

[11] V. Dima, M. Eftimie, A. Volceanov, A. Melinescu, A. Petrescu, M. Ionescu, N. Argintaru, N. Ziman, D. Tita, Rom. J. Mater. 4, 321 (2006) Search in Google Scholar

[12] V. Ducman, M. Kovacevic, Key Eng. Mater. 132–136, 2264 (1997) in Google Scholar

[13] I. Lazău, C. Vancea, Rom. J. Mater. 42(3), 270 (2012) Search in Google Scholar

[14] C. Vancea, G. Moşoarcă, Proc. of The Fourth Edition of the Symposium with International Participation “New trends and strategies in the chemistry of advanced materials” (Timisoara, Romania, 2010) ISSN 2065-0760 Search in Google Scholar

[15] P.A. Trusty, A.R. Boccaccini, Appl. Composite Mater. 5(4), 207 (1998) 10.1023/A:1008858405686Search in Google Scholar

[16] A.R. Boccaccini, M. Bucker, J. Bossert, K. Marszalek, Waste Manage 17, 39 (1997) in Google Scholar

[17] G. Scarinci, G. Brusatin, L. Barbieri, A. Corradi, I. Lancellotti, P. Colombo, S. Hreglich, R. Dall’Igna, J. Eur. Ceram. Soc. 20, 2485 (2000) in Google Scholar

[18] US EPA, Extraction procedure toxicity test, in: Stabilization/Solidification of CERCLA and RCRAWastes. US EPA625/6-89/022 (US EPA, Cincinnati, Ohio, 1986) Search in Google Scholar

[19] I. Lazău, C. Vancea, G. Moşoarcă, Rom. J. Mater. 43(1), 68 (2013) Search in Google Scholar

[20] M. Altaf, M.A. Chaudhry, J. Mod. Phys. 1, 201 (2010) in Google Scholar

Published Online: 2014-4-30
Published in Print: 2014-7-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow