Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 30, 2014

Azobenzene functionalized mesoporous AlMCM-41-type support for drug release applications

  • Raul-Augustin Mitran EMAIL logo , Daniela Berger , Laura Băjenaru , Silviu Năstase , Cristian Andronescu and Cristian Matei
From the journal Open Chemistry

Abstract

A light-responsive material, aminoazobenzene functionalized AlMCM-41, was synthesized and characterized in order to be used as carrier for drug delivery devices. The light-induced hydrophobic-hydrophilic switching effect of azobenzene functionalized aluminosilicate was exploited in the release of irinotecan, a cytostatic drug. To obtain the functionalized mesoporous support, an azobenzene-silane precursor was synthesized by coupling 4-(4′-aminophenylazo) benzoic acid with 3-aminopropyl triethoxysilane and further grafted on AlMCM-41. The azobenzene functionalized mesoporous aluminosilicate exhibited no significant toxicity towards murine fibroblast healthy cells and a reduced toxicity towards murine melanocyte cells. The hybrid materials obtained by loading irinotecan on AlMCM-41 (wt. 35.4%) and aminoazobenzene modified AlMCM-41 (wt. 22%), respectively were characterized by FTIR, small and wide angle XRD, N2 adsorption-desorption isotherms and DSC analyses. A two-fold increase in the drug release rate from azobenzene functionalized aluminosilicate in phosphate buffer solution under UV irradiation was noticed, as compared with dark conditions. Moreover, the azobenzene functionalization of AlMCM-41 significantly increased the irinotecan delivery rate and total cumulative release in comparison with the pristine AlMCM-41 in similar conditions.

[1] M. Colilla, B. Gonzalez, M. Vallet-Regi, Biomat. Sci. 1, 114 (2013) http://dx.doi.org/10.1039/c2bm00085g10.1039/C2BM00085GSearch in Google Scholar PubMed

[2] Z. Li, J.C. Barnes, A. Bosoy, J.F. Stoddart, J.I. Zink, Chem. Soc. Rev. 41, 2590 (2012) http://dx.doi.org/10.1039/c1cs15246g10.1039/c1cs15246gSearch in Google Scholar PubMed

[3] A. Popat, S.B. Hartono, F. Stahr, J. Liu, S.Z. Qiao, G. Qing Lu, Nanoscale 3, 2801 (2011) http://dx.doi.org/10.1039/c1nr10224a10.1039/c1nr10224aSearch in Google Scholar PubMed

[4] J.L. Vivero-Escoto, I.I. Slowing, B.G. Trewyn, V.S.Y. Lin, Small 6, 1952 (2010) http://dx.doi.org/10.1002/smll.20090178910.1002/smll.200901789Search in Google Scholar PubMed

[5] F. Tang, L. Li, D. Chen, Adv. Mater. 24, 1504 (2012) http://dx.doi.org/10.1002/adma.20110476310.1002/adma.201104763Search in Google Scholar PubMed

[6] M. Vallet-Regí, F. Balas, D. Arcos, Angew. Chem. Int. Edit. 46, 7548 (2007) http://dx.doi.org/10.1002/anie.20060448810.1002/anie.200604488Search in Google Scholar PubMed

[7] T. Tanaka, H. Ogino, M. Iwamoto, Langmuir 23, 11417 (2007) http://dx.doi.org/10.1021/la701923610.1021/la7019236Search in Google Scholar PubMed

[8] N. Liu, Z. Chen, D.R. Dunphy, Y.-B. Jiang, R.A. Assink, C.J. Brinker, Angew. Chem. Int. Edit. 42, 1731 (2003) http://dx.doi.org/10.1002/anie.20025018910.1002/anie.200250189Search in Google Scholar PubMed

[9] J. Lu, E. Choi, F. Tamanoi, J.I. Zink, Small 4, 421 (2008) http://dx.doi.org/10.1002/smll.20070090310.1002/smll.200700903Search in Google Scholar PubMed PubMed Central

[10] S. Angelos, E. Choi, F. Vögtle, L. De Cola, J.I. Zink, J. Phys. Chem. C 111, 6589 (2007) http://dx.doi.org/10.1021/jp070721l10.1021/jp070721lSearch in Google Scholar

[11] M. Alvaro, M. Benitez, D. Das, H. Garcia, E. Peris, Chem. Mater. 17, 4958 (2005) http://dx.doi.org/10.1021/cm050837z10.1021/cm050837zSearch in Google Scholar

[12] Y. Zhu, M. Fujiwara, Angew. Chem. Int. Edit. 46, 2241 (2007) http://dx.doi.org/10.1002/anie.20060485010.1002/anie.200604850Search in Google Scholar PubMed

[13] Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C.-H. Yan, W. Tan, ACS Nano 6, 6337 (2012) http://dx.doi.org/10.1021/nn301836510.1021/nn3018365Search in Google Scholar PubMed PubMed Central

[14] D.P. Ferris, Y.-L. Zhao, N.M. Khashab, H.A. Khatib, J.F. Stoddart, J.I. Zink, J. Am. Chem. Soc. 131, 1686 (2009) http://dx.doi.org/10.1021/ja807798g10.1021/ja807798gSearch in Google Scholar PubMed

[15] Y.-W. Yang, Med. Chem. Comm. 2, 1033 (2011) http://dx.doi.org/10.1039/c1md00158b10.1039/c1md00158bSearch in Google Scholar

[16] R.H. El Halabieh, O. Mermut, C.J. Barrett, Pure Appl. Chem. 76, 1445 (2004) http://dx.doi.org/10.1351/pac20047607144510.1351/pac200476071445Search in Google Scholar

[17] X. Pei, A. Fernandes, B. Mathy, X. Laloyaux, B. Nysten, O. Riant, A.M. Jonas, Langmuir 27, 9403 (2011) http://dx.doi.org/10.1021/la201526u10.1021/la201526uSearch in Google Scholar PubMed

[18] C. Song, R. Griffin, H. Park, In: B. Teicher (Ed.), Cancer Drug Resistance (Humana Press, Totowa, New Jersey, 2006) 21 Search in Google Scholar

[19] K.H. Schündehütte, Houben-Weyl Methoden der Organischen Chemie (Thieme, Stuttgart, 196510/3 (in German) Search in Google Scholar

[20] G.B. Demirel, N. Dilsiz, M. Cakmak, T. Caykara, J. Mater. Chem. 21, 3189 (2011) http://dx.doi.org/10.1039/c0jm03528a10.1039/c0jm03528aSearch in Google Scholar

[21] F. Laduron, V. Tamborowski, L. Moens, A. Horvath, D. De Smaele, S. Leurs, Org. Process. Res. Dev. 9, 102 (2005) http://dx.doi.org/10.1021/op049812w10.1021/op049812wSearch in Google Scholar

[22] G. Maria, D. Berger, S. Nastase, I. Luta, Micropor. Mesopor. Mat. 149, 25 (2012) http://dx.doi.org/10.1016/j.micromeso.2011.09.00510.1016/j.micromeso.2011.09.005Search in Google Scholar

[23] A.H. Janssen, A.J. Koster, K.P. de Jong, J. Phys. Chem. B 106, 11905 (2002) http://dx.doi.org/10.1021/jp025971a10.1021/jp025971aSearch in Google Scholar

[24] M.J.B. Souza, A.S. Araujo, A.M.G. Pedrosa, B.A. Marinkovic, P.M. Jardim, E. Morgado Jr, Mater. Lett. 60, 2682 (2006) http://dx.doi.org/10.1016/j.matlet.2006.01.06610.1016/j.matlet.2006.01.066Search in Google Scholar

[25] S. Nastase, L. Bajenaru, C. Matei, R. A. Mitran, D. Berger, Micropor. Mesopor. Mat. 182, 32 (2013) http://dx.doi.org/10.1016/j.micromeso.2013.08.01810.1016/j.micromeso.2013.08.018Search in Google Scholar

[26] D. Arcos, A. López-Noriega, E. Ruiz-Hernández, O. Terasaki, M. Vallet-Regí, Chem. Mater. 21, 1000 (2009) http://dx.doi.org/10.1021/cm801649z10.1021/cm801649zSearch in Google Scholar

[27] Q. He, J. Shi, F. Chen, M. Zhu, L. Zhang, Biomater. 31, 3335 (2010) http://dx.doi.org/10.1016/j.biomaterials.2010.01.01510.1016/j.biomaterials.2010.01.015Search in Google Scholar PubMed

Published Online: 2014-4-30
Published in Print: 2014-7-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.5.2023 from https://www.degruyter.com/document/doi/10.2478/s11532-014-0534-2/html
Scroll to top button