Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 30, 2014

Azobenzene functionalized mesoporous AlMCM-41-type support for drug release applications

  • Raul-Augustin Mitran EMAIL logo , Daniela Berger , Laura Băjenaru , Silviu Năstase , Cristian Andronescu and Cristian Matei
From the journal Open Chemistry


A light-responsive material, aminoazobenzene functionalized AlMCM-41, was synthesized and characterized in order to be used as carrier for drug delivery devices. The light-induced hydrophobic-hydrophilic switching effect of azobenzene functionalized aluminosilicate was exploited in the release of irinotecan, a cytostatic drug. To obtain the functionalized mesoporous support, an azobenzene-silane precursor was synthesized by coupling 4-(4′-aminophenylazo) benzoic acid with 3-aminopropyl triethoxysilane and further grafted on AlMCM-41. The azobenzene functionalized mesoporous aluminosilicate exhibited no significant toxicity towards murine fibroblast healthy cells and a reduced toxicity towards murine melanocyte cells. The hybrid materials obtained by loading irinotecan on AlMCM-41 (wt. 35.4%) and aminoazobenzene modified AlMCM-41 (wt. 22%), respectively were characterized by FTIR, small and wide angle XRD, N2 adsorption-desorption isotherms and DSC analyses. A two-fold increase in the drug release rate from azobenzene functionalized aluminosilicate in phosphate buffer solution under UV irradiation was noticed, as compared with dark conditions. Moreover, the azobenzene functionalization of AlMCM-41 significantly increased the irinotecan delivery rate and total cumulative release in comparison with the pristine AlMCM-41 in similar conditions.

[1] M. Colilla, B. Gonzalez, M. Vallet-Regi, Biomat. Sci. 1, 114 (2013) in Google Scholar PubMed

[2] Z. Li, J.C. Barnes, A. Bosoy, J.F. Stoddart, J.I. Zink, Chem. Soc. Rev. 41, 2590 (2012) in Google Scholar PubMed

[3] A. Popat, S.B. Hartono, F. Stahr, J. Liu, S.Z. Qiao, G. Qing Lu, Nanoscale 3, 2801 (2011) in Google Scholar PubMed

[4] J.L. Vivero-Escoto, I.I. Slowing, B.G. Trewyn, V.S.Y. Lin, Small 6, 1952 (2010) in Google Scholar PubMed

[5] F. Tang, L. Li, D. Chen, Adv. Mater. 24, 1504 (2012) in Google Scholar PubMed

[6] M. Vallet-Regí, F. Balas, D. Arcos, Angew. Chem. Int. Edit. 46, 7548 (2007) in Google Scholar PubMed

[7] T. Tanaka, H. Ogino, M. Iwamoto, Langmuir 23, 11417 (2007) in Google Scholar PubMed

[8] N. Liu, Z. Chen, D.R. Dunphy, Y.-B. Jiang, R.A. Assink, C.J. Brinker, Angew. Chem. Int. Edit. 42, 1731 (2003) in Google Scholar PubMed

[9] J. Lu, E. Choi, F. Tamanoi, J.I. Zink, Small 4, 421 (2008) in Google Scholar PubMed PubMed Central

[10] S. Angelos, E. Choi, F. Vögtle, L. De Cola, J.I. Zink, J. Phys. Chem. C 111, 6589 (2007) in Google Scholar

[11] M. Alvaro, M. Benitez, D. Das, H. Garcia, E. Peris, Chem. Mater. 17, 4958 (2005) in Google Scholar

[12] Y. Zhu, M. Fujiwara, Angew. Chem. Int. Edit. 46, 2241 (2007) in Google Scholar PubMed

[13] Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C.-H. Yan, W. Tan, ACS Nano 6, 6337 (2012) in Google Scholar PubMed PubMed Central

[14] D.P. Ferris, Y.-L. Zhao, N.M. Khashab, H.A. Khatib, J.F. Stoddart, J.I. Zink, J. Am. Chem. Soc. 131, 1686 (2009) in Google Scholar PubMed

[15] Y.-W. Yang, Med. Chem. Comm. 2, 1033 (2011) in Google Scholar

[16] R.H. El Halabieh, O. Mermut, C.J. Barrett, Pure Appl. Chem. 76, 1445 (2004) in Google Scholar

[17] X. Pei, A. Fernandes, B. Mathy, X. Laloyaux, B. Nysten, O. Riant, A.M. Jonas, Langmuir 27, 9403 (2011) in Google Scholar PubMed

[18] C. Song, R. Griffin, H. Park, In: B. Teicher (Ed.), Cancer Drug Resistance (Humana Press, Totowa, New Jersey, 2006) 21 Search in Google Scholar

[19] K.H. Schündehütte, Houben-Weyl Methoden der Organischen Chemie (Thieme, Stuttgart, 196510/3 (in German) Search in Google Scholar

[20] G.B. Demirel, N. Dilsiz, M. Cakmak, T. Caykara, J. Mater. Chem. 21, 3189 (2011) in Google Scholar

[21] F. Laduron, V. Tamborowski, L. Moens, A. Horvath, D. De Smaele, S. Leurs, Org. Process. Res. Dev. 9, 102 (2005) in Google Scholar

[22] G. Maria, D. Berger, S. Nastase, I. Luta, Micropor. Mesopor. Mat. 149, 25 (2012) in Google Scholar

[23] A.H. Janssen, A.J. Koster, K.P. de Jong, J. Phys. Chem. B 106, 11905 (2002) in Google Scholar

[24] M.J.B. Souza, A.S. Araujo, A.M.G. Pedrosa, B.A. Marinkovic, P.M. Jardim, E. Morgado Jr, Mater. Lett. 60, 2682 (2006) in Google Scholar

[25] S. Nastase, L. Bajenaru, C. Matei, R. A. Mitran, D. Berger, Micropor. Mesopor. Mat. 182, 32 (2013) in Google Scholar

[26] D. Arcos, A. López-Noriega, E. Ruiz-Hernández, O. Terasaki, M. Vallet-Regí, Chem. Mater. 21, 1000 (2009) in Google Scholar

[27] Q. He, J. Shi, F. Chen, M. Zhu, L. Zhang, Biomater. 31, 3335 (2010) in Google Scholar PubMed

Published Online: 2014-4-30
Published in Print: 2014-7-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.5.2023 from
Scroll to top button