Abstract
The aim of this study is to evaluate the accuracy of three binary alloys’ composition, and their biocompatibility. Depending on the intended use of the medical devices made from these materials, dynamic or static tests should be performed. We have chosen static tests as we thought they may be used as knee or hip replacement, and not as cardiac valves.
Three binary alloys ( Zr10Nb, Zr2.5Nb and Zr12Ta) were obtained from high purity powders (>99.9%), using an induction furnace first, and an electric arc furnace for a perfect homogenization. Their final composition was verified with a XRF analyzer-INNOV-X.
Hemolysis tests can determine the degree of red blood cells lysis and the release of hemoglobin. The released hemoglobin quantity was extremely small, under 2%, in all cases, and the coagulation tests showed no risk for thrombosis. The electrochemical behavior was also studied in biological fluid, human female serum, and showed a low corrosion rate.
The obtained alloys do not cause hemolysis, so they are hemocompatible with all blood types.
[1] S. Krajewski & al., Acta Biomater. 9, 7460 (2013) http://dx.doi.org/10.1016/j.actbio.2013.03.01610.1016/j.actbio.2013.03.016Search in Google Scholar
[2] A. Gomez Sanchez, W. Schreiner, G. Duffóc, S. Ceré, Appl. Surf. Sci. 257, 6397 (2011) http://dx.doi.org/10.1016/j.apsusc.2011.02.00510.1016/j.apsusc.2011.02.005Search in Google Scholar
[3] ISO 10993-4:2002/Amd 1:2006 Biological evaluation of medical devices Part 4: Selection of tests for interactions with blond (International Organization for Standardization, Geneva, Switzerland, 2009) Search in Google Scholar
[4] S. Logothetidis, Diamond Relat. Mater. 16, 1847 (2007) http://dx.doi.org/10.1016/j.diamond.2007.05.01210.1016/j.diamond.2007.05.012Search in Google Scholar
[5] L.S. Bolen, O. Svendsen, Regulatory guidelines for biocompatibility safety testing, Medical plastics and biomaterials: materials technology for medical products 4, 16 (1997) Search in Google Scholar
[6] V. Han, K. Serrano, D.V. Devine, Vox Sang. 98, 116 (2010) http://dx.doi.org/10.1111/j.1423-0410.2009.01249.x10.1111/j.1423-0410.2009.01249.xSearch in Google Scholar
[7] P. Balasubramaniam, A. Malathi, J. Postgrad. Med. 38, 8 (1992) Search in Google Scholar
[8] ASTM F756-00, Standard Practice for Assessment of Hemolytic Properties of Materials (ASTM International, West Conshohocken, PA, USA, 2004) Search in Google Scholar
[9] W. Van Oeveren, P. Schoen, C.A. Maijers, S.H. Monnink, A.J. Van Boven, Progress in Biomedical Research. 4, 17 (1999) Search in Google Scholar
[10] F. Date, C. Wagner, Hemostasis (Lothar Thomas’ Clinical Laboratory Diagnostics, Frankfurt, 1998) 602 Search in Google Scholar
[11] F. Fischbach, A Manual of Laboratory and Diagnostic Test, 8th edition (Lippincott, Philadelphia, 2009) 161 Search in Google Scholar
[12] C.M. Venturini, J.E. Kaplan, Semin. Thromb. Hemost. 18, 275 (1992) http://dx.doi.org/10.1055/s-2007-100243510.1055/s-2007-1002435Search in Google Scholar
[13] C. Sperling, M. Fischer, M.F. Maitz, C. Werner, Biomaterials 30, 4447 (2009) http://dx.doi.org/10.1016/j.biomaterials.2009.05.04410.1016/j.biomaterials.2009.05.044Search in Google Scholar
[14] A. Mazare, M. Dilea, D. Ionita, I. Titorencu, V. Trusca, E. Vasile, Bioelectrochemistry 87, 124 (2012) http://dx.doi.org/10.1016/j.bioelechem.2012.01.00210.1016/j.bioelechem.2012.01.002Search in Google Scholar
[15] B.W. Buczynski, M.M. Kory, R.P. Steiner, T.A. Kittinger, R.D. Ramsier, Colloids Surf. B 30, 167 (2003) http://dx.doi.org/10.1016/S0927-7765(03)00068-710.1016/S0927-7765(03)00068-7Search in Google Scholar
[16] Y. Tamada, Y. Ikada, J. Biomed. Mater. Res. 28, 783 (1994) http://dx.doi.org/10.1002/jbm.82028070510.1002/jbm.820280705Search in Google Scholar
[17] Y. Ikada, Biomaterials 15, 725 (1994) http://dx.doi.org/10.1016/0142-9612(94)90025-610.1016/0142-9612(94)90025-6Search in Google Scholar
[18] P. Van der Valk, A.W.J. van Pelt, H.J. Busscher, H.P. de Jong, Ch.R.H. Wildevuur, J. Arends, J. Biomed. Mater. Res. 17, 807 (1983) http://dx.doi.org/10.1002/jbm.82017050810.1002/jbm.820170508Search in Google Scholar
[19] P.B. Van Wachem, T. Beguiling, J. Feijen, A. Bantjes, J.P. Detmers, W.G. van Aken, Biomaterials 6, 403 (1985) http://dx.doi.org/10.1016/0142-9612(85)90101-210.1016/0142-9612(85)90101-2Search in Google Scholar
[20] E. Eisenbarth, D. Velten, M. Müller, R. Thull, J. Breme, Biomaterials 25, 5705 (2004) http://dx.doi.org/10.1016/j.biomaterials.2004.01.02110.1016/j.biomaterials.2004.01.021Search in Google Scholar PubMed
[21] F. Rosalbino, D. Macciò, A. Saccone, E. Angelini, S. Delfino, Mater. Corr. 63, 580 (2012) 10.1002/maco.201006012Search in Google Scholar
[22] Y.Z. Huang, D.J. Blackwood, Electroch. Acta 51, 1099 (2005) http://dx.doi.org/10.1016/j.electacta.2005.05.05110.1016/j.electacta.2005.05.051Search in Google Scholar
[23] D. Mareci, R. Chelariu, D.M. Gordin, G. Ungureanu, T. Gloriant, Acta Biomater. 5, 3625 (2009) http://dx.doi.org/10.1016/j.actbio.2009.05.03710.1016/j.actbio.2009.05.037Search in Google Scholar PubMed
© 2014 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.