Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 15, 2014

Chemical and technological characterization of medieval glass bracelets from South-East Bulgaria

Ralitsa Georgieva, Albena Detcheva and Yanko Dimitriev
From the journal Open Chemistry


The present paper deals with chemical and physicochemical characterization of seven glass fragments of medieval glass bracelets from South-East Bulgaria. Samples were investigated by Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and differential thermal analysis (DTA). Gravimetric chemical analysis was used for silica assessment. Flame photometry was applied to determine sodium and potassium content while aluminium, calcium and magnesium were determined by flame atomic absorption spectrometry after dissolution using a mixture of acids. All investigated artefacts are soda-lime-silica glasses and when produced two different recipe norms were used. Important technological parameters of glass manufacturing were determined and discussed. This investigation throws light on the technological development and production of glass during medieval times.

[1] I. Kuleff, R. Djingova, Archaeolgia Bulgarica VI, 101 (2002) Search in Google Scholar

[2] V. Zlatarski, History of Bulgarian state during the Middle Ages (Academic Press Marin Drinov, Sofia, 1994), (in Bulgarian) Vol. 1, Part 2 Search in Google Scholar

[3] D. Aladzhov, Bulletin of the Museums from South-East Bulgaria 20, 17 (1994) (in Bulgarian) Search in Google Scholar

[4] I. Petrov, M. Slavova, Historical monument “Mezek” (Historical museum Press, Haskovo, 2002), (in Bulgarian) Search in Google Scholar

[5] R. Djingova, I. Kuleff, Arhaeometry 34, 53 (1992) in Google Scholar

[6] I. Kuleff, R. Djingova, Arhaeometry 49, 245 (2007) in Google Scholar

[7] G. Rauret, E. Casassas, M. Baucells, Archaeometry 27, 195 (1985) in Google Scholar

[8] R. Georgieva, A. Detcheva, Y. Dimitriev, E. Kashchieva, J. Non-Cryst. Solids. 356, 1526 (2010) in Google Scholar

[9] A. Detcheva, R. Georgieva, E. Ivanova, Compt. Rend. Acad. Bulg. Sci. 63, 1123 (2010) Search in Google Scholar

[10] R. Kirov, E. Kashchieva, Y. Dimitriev, S. Tsaneva, J. Univ. Chem. Technol. Metallurgy 38, 1449 (2003) Search in Google Scholar

[11] A. Silvestri, G. Molin, G. Salviulo, J. Non-Cryst. Solids. 351, 1338 (2005) in Google Scholar

[12] G. Barbera, G. Barone, V. Crupi, F. Longo, D. Majolino, P. Mazzoleni, G. Sabatino, D. Tanasi, V. Venuti, J. Non-Cryst. Solids. 358, 1554 (2012) in Google Scholar

[13] S. Sánchez-Ramos, A. Doménech-Carbó, J.V. Gimeno-Adelantado, J. Peris-Vicente, F.M. Valle-Algarra. Thermochim. Acta. 476, 11 (2008) in Google Scholar

[14] J. Zarzycki, Glasses and the vitreous state, In: Cambridge Solid State Science Series (Cambridge University Press, New York, 1991) Search in Google Scholar

[15] A. Varshneya, Fundamentals of inorganic glasses (Academic Press, Inc, New York, 1994) 10.1016/B978-0-08-057150-8.50025-2Search in Google Scholar

[16] N. Pavlushkin, P. Sentiurin, R. Hodakowskaia, Practice of technology of glasses and glassceramics (Literature of Building Press, Moskow, 1970), (in Russsian) Search in Google Scholar

[17] M. T. Domenech-Carbo, A. Domenech-Carbo, L. Osete-Cortina, M.C. Saurí-Peris, Microchim. Acta. 154, 123 (2006) in Google Scholar

[18] R. Bock, Aufschlussmethoden der anorganischen und organischen Chemie (Verlag Chemie GmbH, Weinheim/Bergstr, 1972), (in German) Search in Google Scholar

[19] Norm DIN 12 111, Pruefung von Glas; Griessverfahren zur Pruefung der Wasserbestaendigkeit von Glas als Werkstoff bei 98°C und Einteilung der Glaeser in hydrolytische Klassen, Germany, Berlin, 1976 (in German) Search in Google Scholar

[20] Y. Shtapova, History of ancient glassmaking (Moscow University Press, Moscow, 1983), (in Russsian) Search in Google Scholar

[21] M. Milanova, R. Iordanova, L. Aleksandrov, M. Hassan, Y. Dimitriev, J. Non-Cryst. Solids. 357, 2713 (2011) in Google Scholar

[22] R. Iordanova, L. Aleksandrov, A. Bachvarova-Nedelcheva, M. AtaaLa, Y. Dimitriev, J. Non-Cryst. Solids. 357, 2663 (2011) in Google Scholar

[23] Y. Lee, Y. L. Peng, M. Tomozawa, J. Non-Cryst. Solids. 22 125 (1997) in Google Scholar

[24] S. Turner, J. Soc. Glass Technol. XL, 277 (1956) Search in Google Scholar

[25] M. Cable, J. Smedley, Glass Technology 30, 94 (1987) Search in Google Scholar

[26] I. Freestone, M. Ponting, M. Hughies, Archaeometry 44, 257 (2002) in Google Scholar

[27] A. Shortland, L. Schachner, I. Freestone, M. Tite, J. Archaeol. Sci. 33, 521 (2006) in Google Scholar

[28] K. Wedepohl, In: J. Henning (Ed.), Zwischen Byzanz und Abendland. Pliska der östliche Balkanraum und Europa im Spiegel der Frühmittelalterarchäologie. Proc. Int. Kolloquium (Druckzentrum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, 2000) (in German) Search in Google Scholar

[29] M. Pollard, C. Heron. Archaeological Chemistry, 2nd edition, (RSC Publishing, Cambridge, UK, 2008) Search in Google Scholar

[30] O. Mazurin, Glass Physics and Chemistry 33, 22 (2007) in Google Scholar

[31] O. Mazurin, Y. Gankin, Proceedings, International Congress on Glass, July 1–6, 2007, Strasbourg, France Search in Google Scholar

[32] C. Moynihan, A. Easteal, J. Wilder, J. Tucker, J. Phys. Chem. 78, 2673 (1974) in Google Scholar

[33] Y. Zhang, Y. Yang, J. Zheng,W. Hua, G. Chen, Mater. Chem. Phys. 114, 319 (2009) in Google Scholar

Published Online: 2014-5-15
Published in Print: 2014-11-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow