Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 7, 2014

Kinetic study of wood pyrolysis in presence of metal halides

  • Vladimir Beliy EMAIL logo and Elena Udoratina
From the journal Open Chemistry


The purpose of this work was to study the kinetics of wood pyrolysis in the presence of inorganic salts, representatives of classes of alkali and alkaline earth metal halides (NaCl, KCl, KBr, CaCl2, BaCl2·2H2O) and Lewis acids (AlCl3·6H2O, FeCl3·6H2O, CuCl2, CuBr2, ZnCl2·1.5H2O, NiCl2·6H2O, SnCl2·2H2O) using TG-DSC. The activity of these catalysts was estimated by the temperature of the beginning of pyrolysis, charcoal yield and kinetic parameters, such as energy of activation and reaction order. Using the Lewis acids as catalysts for pyrolysis leads to a decrease in the temperature of the process beginning and the activation energy. In the presence of other catalysts activation energy does not significantly change. The increase of a seeming reaction order in the presence of Lewis acids possibly is a consequence of complication of the thermodestruction mechanism, with the appearance of new parallel competing stages.

[1] F.G. Emmerich, C.A. Luengo, Biomass and Bioenergy 10, 41 (1996) in Google Scholar

[2] R.S. Sampaio, M.E. Resende, L.P. Almeida, R.R. Junqueira, Electric Furnace Conference Proceedings (Iron and Steel Society/AIME, New York, 1997) 281 Search in Google Scholar

[3] L.V. Gordon, S.O. Skvorcov, V.I. Lisov, Technology and equipment of timber-chemical productions: The textbook for technical schools, 5th edition (Timber Industry, Moscow, 1988) 360 (in Russian) Search in Google Scholar

[4] V.N. Kozlov, A.A. Nimvickij, Technology pyrogenetic wood processing (Forest Industry, Moscow, 1954) (in Russian) Search in Google Scholar

[5] B.N. Kuznecov, Chemistry for Sustainable Development 9, 443 (2001) (in Russian) Search in Google Scholar

[6] B.N. Kuznecov, Y.G. Golovin, V.V. Golovina, A.O. Eremina, A.V. Levdanskij, Chemistry of plant raw materials 2, 57 (2002) (in Russian) Search in Google Scholar

[7] V.N. Chesnokov, B.N. Kuznecov, F. Loro, V. Kloze, A. Shinkel, Coniferous of boreal zone 1, 91 (2003) (in Russian) Search in Google Scholar

[8] V.A. Stoliarova (Ed.), The new handbook for chemist and technologist. Raw materials and industrial organic and inorganic substances, p. II (ANO NPO «Professional», St. Petersburg, 2007) Search in Google Scholar

[9] M. Van de Velden, J. Baeyens, A. Brems, B. Janssens, R. Dewil, Renew. Energy 35, 232 (2010) in Google Scholar

[10] A.M. Azeez, D. Meier, J. Odermatt, J. Anal. Appl. Pyrolysis 90, 81 (2011) in Google Scholar

[11] A. Demirbas, J. Anal. Appl. Pyrolysis 72, 243 (2004) in Google Scholar

[12] P.R. Patwardhan, J.A. Satrio, R.C. Brown, B.H. Shanks, Bioresource Technology 101, 4646 (2010) in Google Scholar

[13] V.I. Azarov, A.V. Burov, A.V. Obolenskaya, Wood Chemistry and synthetic polymers: manual for high schools (SPbLTA, St. Petersburg, 1999) (in Russian) Search in Google Scholar

[14] W. Jun, Z. Mingxu, C. Mingqiang, M. Fanfei, Z. Suping, R. Zhengwei, Y. Yongjie, Thermochim Acta 444, 110 (2006) in Google Scholar

[15] Z. Gokdai, A. Sınag, T. Yumak, Biomass and bioenergy 34, 402 (2010) in Google Scholar

[16] A. Jensen, K. Dam-Johansen, M.A. Wojtowicz, M.A. Serio, Energy and Fuels 12, 929 (1998) in Google Scholar

[17] P. Rutkowski, Journal of Analyt. and App. Pyrolysis. 98, 86 (2012) in Google Scholar

[18] F. Suarez-Garcia, A. Martinez-Alonso, J.M.D. Tascon, J. Anal. Appl. Pyrolysis 62, 93 (2002) in Google Scholar

[19] X. Zou, J. Yao, X. Yang, W. Song, W. Lin, Energy Fuels 21, 619 (2007) in Google Scholar

[20] S. Wang, Q. Liu, Y. Liao, Z. Luo, K. Cen, Korean J. Chem. Eng 24, 336 (2007) in Google Scholar

[21] L.C.A. Oliveiraa, E. Pereiraa, I.R. Guimaraesa, A. Valloneb, M. Pereirac, J.P. Mesquitac, K. Sapag, J. Hazard. Mat. 65, 87 (2009) in Google Scholar PubMed

[22] A.V. Obolenskaya, V.P. Shhegolev, G.P. Akim, N.L. Kossovich, I.Z. Emelyanova, In: V.M. Nikitin (Ed.) Practical work on the chemistry of wood and cellulose (Forest Industry, Moskow, 1965) (in Russian) Search in Google Scholar

[23] A.W. Coats, J.P. Redfern, Nature 201, 68 (1964) in Google Scholar

[24] J.H. Flynn, L.A. Wall, Journal of Research of the National Bureau of Standard, Section A Physics and Chemistry A70, 487 (1966) in Google Scholar PubMed PubMed Central

[25] T. Ozawa, Bull. Chem. Soc. Jpn. 38, 1881 (1965) in Google Scholar

[26] E.S. Freeman, B. Carroll, J. Phys. Chem. 62, 394 (1958) in Google Scholar

[27] H.J. Borchardt, F. Daniels, J. Am. Chem. Soc. 79, 41 (1957) in Google Scholar

[28] H. Yang, R. Yan, T. Chin, D.T. Liang, H. Chen, C. Zheng, Energy and Fuels 18, 1814 (2004) in Google Scholar

[29] J. Li, R. Yan, B. Xiao, D.T. Liang, D.H. Lee, Energy and Fuels. 22, 16 (2008) in Google Scholar

[30] M.S. Masnadi, R. Habibi, J. Kopyscinski, J.M. Hill, X. Bi, C.J. Lim, N. Ellis, J.R. Grace, Fuel 117, 1204 (2014) in Google Scholar

[31] C. Vovelle, J.L. Delfau, H. Mellottee, Symposium on mathematical modeling of biomass pyrolysis phenomena (ACS, Div. of Fuel Chem. Washington, D.C., 1983) 291 Search in Google Scholar

[32] F.A. Lopez, A.A. El Haddad, F.J. Alguacil, T.A. Centeno, B. Lobato, Materials science (Medžiagotyra) 19, 403 (2013) 10.5755/ in Google Scholar

[33] S. Gunasekaran, G. Anbalagan, Bull. Mater. Sci. 30, 339 (2007) in Google Scholar

[34] Z. Liu, Z. Jiang, B. Fei, X. Liu, BioResources. 8, 5014 (2013) 10.15376/biores.8.4.5014-5024Search in Google Scholar

[35] Z. Jiang, Z. Liu, B. Fei, Z. Cai, Y. Yu, X. Liu, J. Anal. Appl. Pyrol. 94, 48 (2012) in Google Scholar

[36] M.J. Antal, G. Varhegyi, Ind. Eng. Chem. Res. 34, 703 (1995) in Google Scholar

[37] I. Milosavljevic, E.M. Suuberg, Ind. Eng. Chem. Res. 34, 1081 (1995) in Google Scholar

[38] T. Cordero, J.M.R. Maroto, J.R. Mirasol, J.J. Rodriguez, Thermochim. Acta 164, 135 (1990) in Google Scholar

[39] M. Gronli, M.J. Antal, G. Varhegyi, Ind. Eng. Chem. Res. 38, 2238 (1999) in Google Scholar

[40] G. Jiang, D.J. Nowakowski, A.V. Bridgwater, Thermochim. Acta 498, 61 (2010) in Google Scholar

[41] J. Kaloustian, A. M. Pauli, J. Pastor, J. Therm. Anal. Calorim. 63, 7 (2001) in Google Scholar

[42] Q. Liu, S. Wang, Y. Zheng, Z. Luo, K. Cen, J. Anal. Appl. Pyrolysis 82, 170 (2008) in Google Scholar

[43] J.J.M. Orfao, F.J.A. Antunes, J.L. Figueiredo, Fuel 78, 349 (1999) in Google Scholar

[44] J.J. Manya, E. Velo, L. Puigjaner, Ind. Eng. Chem. Res. 42, 434 (2003) in Google Scholar

[45] G.R. Ponder, G.N. Richards, T.T. Stevenson, J. Anal. Appl. Pyrolysis 22, 217 (1992) in Google Scholar

[46] R. Vinu, L.J. Broadbelt, Energy Environ. Sci. 5, 9898 (2012) in Google Scholar

[47] P.R. Patwardhan, J.A. Satrio, R. C. Brown, B.H. Shanks, J. Anal. Appl. Pyrolysis 86, 323 (2009) in Google Scholar

[48] E. Jakab, K. Liu, H.L.C. Meuzelaar, Ind. Eng. Chem. Res. 36, 2087 (1997) in Google Scholar

[49] F. Chambona, F. Rataboula, C. Pinela, A. Cabiacb, E. Guillonb, N. Essayema, Applied Catalysis B: Environmental 105, 171 (2011) in Google Scholar

[50] M. Hajaligol, B. Waymack, D. Kellogg, 217-th ACS National Meeting, Anaheim, CA, March 21–25 1999 (ACS, Div. of Fuel Chem., Washington, D.C., 1999) 251 Search in Google Scholar

[51] J. Scheirs, G. Camino, W. Tumiatti, Eur. Polym. J. 37, 933 (2001) in Google Scholar

[52] D. Domvoglou, R. Ibbett, F. Wortmann, J. Taylor, Cellulose 16, 1075 (2009) in Google Scholar

[53] B.K. Kandola, A.R. Horrocks, D. Price, G.V. Coleman, J. Macromol. Sci., Part C. 36, 721 (1996) in Google Scholar

[54] M.M. Hepditch, R.W. Thring, Can. J. Chem. Eng. 78, 226 (2000) in Google Scholar

[55] R.J. Evans, T.A. Milne, M.N. Soltys, J. Anal. Appl. Pyrolysis 9, 207 (1986) in Google Scholar

Published Online: 2014-6-7
Published in Print: 2014-12-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.9.2023 from
Scroll to top button