Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 1, 2007

Integrable three-dimensional coupled nonlinear dynamical systems related to centrally extended operator Lie algebras and their Lax type three-linearization

  • J. Golenia EMAIL logo , O. Hentosh and A. Prykarpatsky
From the journal Open Mathematics

Abstract

The Hamiltonian representation for a hierarchy of Lax type equations on a dual space to the Lie algebra of integro-differential operators with matrix coefficients, extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems, is obtained via some special Bäcklund transformation. The connection of this hierarchy with integrable by Lax two-dimensional Davey-Stewartson type systems is studied.

[1] M. Adler: “On a Trace Functional for Formal Pseudo-Differential perators and the Symplectic Structures of a Korteweg-de Vries Equation”, Invent. Math., 1979, Vol. 50(2), pp. 219–248. 10.1007/BF01410079Search in Google Scholar

[2] V.I. Arnold: Mathematical Methods of Classical Mechanics, Nauka, Moscow, 1989 (in Russian). 10.1007/978-1-4757-2063-1Search in Google Scholar

[3] M. Blaszak: Multi-Hamiltonian Theory of Dynamical Systems, Springer, Verlag-Berlin-Heidelberg, 1998. 10.1007/978-3-642-58893-8Search in Google Scholar

[4] L. Dickey: Soliton equations and Hamiltonian systems, World Scientific, Vol. 42, 1991. 10.1142/1109Search in Google Scholar

[5] O.Ye. Hentosh: “Lax Integrable Supersymmetric Hierarchies on Extended Phase Spaces”, Symmetry, Integrability and Geometry: Methods and Applications, Vol. 1, (2005), p. 11 (to be published). Search in Google Scholar

[6] P.D. Lax: “Periodic Solutions of the KdV Equation”, Commun. Pure Appl. Math., Vol. 28, (1975), pp. 141–188. http://dx.doi.org/10.1002/cpa.316028010510.1002/cpa.3160280105Search in Google Scholar

[7] S.V. Manakov: “The Method of Inverse Scattering Problem and Two-Dimensional Evolution Equations”, Adv. Math. Sci., Vol. 31(5), (1976), pp. 245–246. Search in Google Scholar

[8] Yu.I. Manin and A.O. Radul: “A Supersymmetric Extension of the Kadomtsev-Petviashvili Hierarchy”, Comm. Math. Phys., Vol. 28, (1985), pp. 65–77. http://dx.doi.org/10.1007/BF0121104410.1007/BF01211044Search in Google Scholar

[9] V.B. Matveev and M.I. Salle: Darboux-Bäcklund transformations and applications, Springer, New York, 1993. Search in Google Scholar

[10] E. Nissimov and S. Pacheva: “Symmetries of Supersymmetric Integrable Hierarchies of KP Type”, J. Math. Phys., Vol. 43, (2002), pp. 2547–2586. http://dx.doi.org/10.1063/1.146653310.1063/1.1466533Search in Google Scholar

[11] S.P. Novikov (Ed.): Soliton Theory: Method of the Inverse Problem, Nauka, Moscow, 1980 (in Russian). Search in Google Scholar

[12] W. Oevel: “R-Structures, Yang-Baxter Equations and Related Involution Theorems”, J. Math. Phys., Vol. 30, (1989), pp. 1140–1149. http://dx.doi.org/10.1063/1.52833310.1063/1.528333Search in Google Scholar

[13] W. Oevel and Z. Popowicz: “The bi-Hamiltonian Structure of Fully Supersymmetriń Korteweg-de Vries Systems”, Comm. Math. Phys., Vol. 139, (1991), pp. 441–460. http://dx.doi.org/10.1007/BF0210187410.1007/BF02101874Search in Google Scholar

[14] W. Oevel, W. Strampp and K.P. Constrained: “Hierarchy and bi-Hamiltonian Structures”, Comm. Math. Phys., Vol. 157, (1993), pp. 51–81. http://dx.doi.org/10.1007/BF0209801810.1007/BF02098018Search in Google Scholar

[15] A.K. Prykarpatsky and O.Ye. Hentosh: “The Lie-Algebraic Structure of (2+1)-Dimensional Lax Type Integrable Nonlinear Dynamical Systems”, Ukrainian Math. J., Vol. 56, (2004), pp. 939–946. http://dx.doi.org/10.1023/B:UKMA.0000031706.91337.bd10.1023/B:UKMA.0000031706.91337.bdSearch in Google Scholar

[16] A.K. Prykarpatsky and I.V. Mykytiuk: Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects, Kluwer Academic Publishers, Dordrecht-Boston-London, 1998. 10.1007/978-94-011-4994-5Search in Google Scholar

[17] A.K. Prykarpatsky and D. Blackmore: “Versal deformations of a Dirac type differential operator”, J. Nonlin. Math. Phys., Vol. 6(3), (1999), pp. 246–254. Search in Google Scholar

[18] A.K. Prykarpatsky, V.Hr. Samoilenko, R.I. Andrushkiw, Yu.O. Mitropolsky and M.M. Prytula: “Algebraic Structure of the Gradient-Holonomic Algorithm for Lax Integrable Nonlinear Systems. I”, J. Math. Phys., Vol. 35, (1994), pp. 1763–1777. http://dx.doi.org/10.1063/1.53056910.1063/1.530569Search in Google Scholar

[19] A.M. Samoilenko and A.K. Prykarpatsky: “The spectral and differential-geometric aspects of a generalized de Rham-Hodge theory related with Delsarte transmutation operators in multi-dimension and its applications to spectral and soliton problems”, Nonlinear Analysis TMA, Vol. 65, (2006), pp. 395–432, 395–432. http://dx.doi.org/10.1016/j.na.2005.07.03910.1016/j.na.2005.07.039Search in Google Scholar

[20] Y.A. Prykarpatsky: “The structure of integrable Lax type flows on nonlocal manifolds: dynamical systems with sources”, Math. Methods Phys.-Mech. Fields., Vol. 40(4), (1997), pp. 106–115. Search in Google Scholar

[21] A.M. Samoilenko, A.K. Prykarpatsky and V.G. Samoylenko: “The structure of Darboux-type binarytransformations and their applications in soliton theory”, Ukr. Math. J., Vol. 55(12), (2003), pp. 1704–1723 (in Ukrainian). Search in Google Scholar

[22] Y.A. Prykarpatsky, A.M. Samoilenko and A.K. Prykarpatsky: “The multi-dimensional Delsarte transmutation operators, their differential-geometric structure and applications. Part.1”, Opuscula Math., Vol. 23, (2003), pp. 71–80. Search in Google Scholar

[23] Y.A. Prykarpatsky, A.M. Samoilenko and A.K. Prykarpatsky: “The de Rham-Hodge-Skrypnik theory of Delsarte transmutation operators in multi-dimension and its applications”, Rep. Math. Phys., Vol. 55(3), (2005), pp. 351–363. http://dx.doi.org/10.1016/S0034-4877(05)80051-510.1016/S0034-4877(05)80051-5Search in Google Scholar

[24] J. Golenia, Y.A. Prykarpatsky, A.M. Samoilenko and A.K. Prykarpatsky: “The general differential-geometric structure of multi-dimensional Delsarte transmutation operators in parametric functional spaces and their applications in soliton theory Part 2”, Opuscula Math., Vol. 24, (2004), pp. 71–83. Search in Google Scholar

[25] A.G. Reiman: ”Semenov-Tian-Shansky M.A”, The Integrable Systems, Computer Science Institute Publisher, Moscow-Izhevsk, 2003 (in Russian). Search in Google Scholar

[26] A.G. Reiman and M.A. Semenov-Tian-Shansky: “The Hamiltonian Structure of Kadomtsev-Petviashvili Type Equations”, In: LOMI Proceedings, Vol. 164, Nauka, Leningrad, 1987, pp. 212–227 (in Russian). Search in Google Scholar

[27] A.M. Samoilenko and Y.A. Prykarpatsky: Algebraic-analytic aspects of completely integrable dynamical systems and their perturbations, Institute of Mathematics Publisher, Vol. 41, Kyiv, 2002 (in Ukrainian). Search in Google Scholar

[28] A.M. Samoilenko, A.K. Prykarpatsky and Y.A. Prykarpatsky: “The spectral and differential-geometric aspects of a generalized de Rham — Hodge theory related with Delsarte transmutation operators in multidimension and its applications to spectral and soliton problems”, Nonlinear Anal., Vol. 65, (2006), pp. 395–432. http://dx.doi.org/10.1016/j.na.2005.07.03910.1016/j.na.2005.07.039Search in Google Scholar

[29] A.M. Samoilenko, V.G. Samoilenko, Yu.M. Sydorenko: “The Kadomtsev-Petviashvili Equation Hierarchy with Nonlocal Constraints: Multi-Dimensional Generalizations and Exact Solutions of Reduced Systems”, Ukrainian Math. J., Vol. 49, (1999), pp. 78–97 (in Ukrainian). http://dx.doi.org/10.1007/BF0248740910.1007/BF02487409Search in Google Scholar

[30] M. Sato: “Soliton Equations as Dynamical Systems on Infinite Grassmann Manifolds”, RIMS Kokyuroku, Kyoto Univ., Vol. 439, (1981), pp. 30–40. Search in Google Scholar

[31] M.A. Semenov-Tian-Shansky: “What is the R-Matrix”, Funct. Anal. Appl., Vol. 17(4), (1983), pp. 17–33 (in Russian). Search in Google Scholar

[32] L.A. Takhtadjian and L.D. Faddeev: Hamiltonian Approach in Soliton Theory, Springer, USA, 1986. Search in Google Scholar

[33] Zakharov B. E., Integrable Systems in Multi-Dimensional Spaces, Lect. Notes Phys., Vol. 153, (1983), 190–216. http://dx.doi.org/10.1007/3-540-11192-1_3810.1007/3-540-11192-1_38Search in Google Scholar

[34] L.P. Nizhnik: Inverse Scattering Problems for Hyperbolic Equations, Kiev, Nauk. Dumka Publ., 1991 (in Russian). Search in Google Scholar

[35] M.M. Prytula: Lie-algebraic structure of nonlinear dynamical systems on augmented functional manifolds, Ukrainian Math. Zh., Vol. 49(11), (1997), pp. 1512–1518. http://dx.doi.org/10.1007/BF0248750810.1007/BF02487508Search in Google Scholar

[36] B. Konopelchenko, Yu. Sidorenko and W. Strampp: “(1+1)-dimensional integrable systems as symmetry constraints of (2+1)-dimensional systems”, Phys. Lett. A., Vol. 157, (1991), pp. 17–21. http://dx.doi.org/10.1016/0375-9601(91)90402-T10.1016/0375-9601(91)90402-TSearch in Google Scholar

[37] J.C.C. Nimmo: “Darboux tarnsformations from reductions of the KP-hierarchy”, In: V.G. Makhankov, A.R. Bishop and D.D. Holm: Nonlinear evolution equations and dynamical systems (NEEDS’94), World Scient. Publ., 1994. Search in Google Scholar

Published Online: 2007-3-1
Published in Print: 2007-3-1

© 2007 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 11.12.2023 from https://www.degruyter.com/document/doi/10.2478/s11533-006-0038-1/html
Scroll to top button