Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 1, 2007

Slice modules over minimal 2-fundamental algebras

  • Zygmunt Pogorzały EMAIL logo and Karolina Szmyt
From the journal Open Mathematics


We consider a class of algebras whose Auslander-Reiten quivers have starting components that are not generalized standard. For these components we introduce a generalization of a slice and show that only in finitely many cases (up to isomorphism) a slice module is a tilting module.

[1] I. Assem: “Tilting theory — an introduction”, In: Topics in Algebras, Banach Center Publications, Vol. 26, Part I, PWN, Warszawa, 1990, pp. 127–180. 10.4064/-26-1-127-180Search in Google Scholar

[2] M. Auslander and I. Reiten: “Representation theory of artin algebras III”, Comm. Alg., Vol. 3, (1975), pp. 239–294. Search in Google Scholar

[3] M. Auslander and I. Reiten: “Representation theory of artin algebras IV”, Comm. Alg., Vol. 5, (1977), pp. 443–518. Search in Google Scholar

[4] M. Auslander, I. Reiten and S.O. Smalø: Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math., Vol. 36, Cambridge Univ. Press, Cambridge, 1995. 10.1017/CBO9780511623608Search in Google Scholar

[5] K. Bongartz: Tilted algebras, LNM 903, Springer, Berlin, 1981, pp. 26–38. 10.1007/BFb0092982Search in Google Scholar

[6] M.C.R. Butler and C.M. Ringel: “Auslander-Reiten sequences with few middle terms and applications to string algebras”, Comm. Alg., Vol. 15, (1987), pp. 145–179. Search in Google Scholar

[7] P. Dowbor and A. Skowroński: “Galois coverings of representation-infinite algebras”, Comment. Math. Helv., Vol. 62, (1987), pp. 311–337. Search in Google Scholar

[8] P. Gabriel: Auslander-Reiten sequences and representation-finite algebras, INM 831, Springer, Berlin, 1980, pp. 1–71. 10.1007/BFb0089778Search in Google Scholar

[9] D. Happel and C.M. Ringel: “Tilted algebras”, Trans. Amer. Math. Soc., Vol. 274, (1982), pp. 399–443. in Google Scholar

[10] F. Huard: “Tilted gentle algebras”, Comm. Alg., Vol. 26(1), (1998), pp. 63–72. Search in Google Scholar

[11] F. Huard and Sh. Liu: “Tilted special biserial algebras”, J. Algebra, Vol. 217, (1999), pp. 679–700. in Google Scholar

[12] F. Huard and Sh. Liu: “Tilted string algebras”, J. Pure Appl. Algebra, Vol. 153, (2000), pp. 151–164. in Google Scholar

[13] Z. Pogorzały and M. Sufranek: “Starting and ending components of the Auslander-Reiten quivers of a class of special biserial algebras”, Colloq. Math., Vol. 99(1), (2004), pp. 111–144. Search in Google Scholar

[14] C.M. Ringel: Tame algebras and integral quadratic forms, LNM 1099, Springer, Berlin, 1984. 10.1007/BFb0072870Search in Google Scholar

[15] J. Schröer: “Modules without self-extensions over gentle algebras”, J. Algebra, Vol. 216, (1999), pp. 178–189. in Google Scholar

[16] A. Skowroński: “Generalized standard Auslander-Reiten components”, J. Math. Soc. Japan, Vol. 46, (1994), pp. 517–543. in Google Scholar

[17] A. Skowroński and J. Waschbüsch: “Representation-finite biserial algebras”, J. Reine Angew. Math., Vol. 345, (1983), pp. 172–181. Search in Google Scholar

[18] B. Wald and J. Waschbüsch: “Tame biserial algebras”, J. Algebra, Vol. 95, (1985), pp. 480–500. in Google Scholar

Published Online: 2007-3-1
Published in Print: 2007-3-1

© 2007 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 10.12.2023 from
Scroll to top button