Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 24, 2010

A glimpse of deductive systems in algebra

  • Dumitru Buşneag EMAIL logo and Sergiu Rudeanu
From the journal Open Mathematics

Abstract

The concept of a deductive system has been intensively studied in algebraic logic, per se and in connection with various types of filters. In this paper we introduce an axiomatization which shows how several resembling theorems that had been separately proved for various algebras of logic can be given unique proofs within this axiomatic framework. We thus recapture theorems already known in the literature, as well as new ones. As a by-product we introduce the class of pre-BCK algebras.

[1] Abbott J.C., Implicational algebras, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 1967, 11(59), 3–23 Search in Google Scholar

[2] Abbott J.C., Semi-boolean algebra, Mat. Vesnik., 1967, 4(19), 177–198 Search in Google Scholar

[3] Birkhoff G., Lattice Theory, 3rd ed., American Mathematical Society, Providence, 1967 Search in Google Scholar

[4] Boicescu V., Filipoiu A., Georgescu G., Rudeanu S., Łukasiewicz-Moisil Algebras, North-Holland, Amsterdam, 1991 Search in Google Scholar

[5] Buşneag D., Contribuţi la studiul algebrelor Hilbert, Ph.D. thesis, Univ. Bucharest, 1985 Search in Google Scholar

[6] Buşneag D., On the maximal deductive systems of a bounded Hilbert algebra, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 1987, 31(79)(1), 9–21 Search in Google Scholar

[7] Buşneag D., Hertz algebras of fractions and maximal Hertz algebra of quotients, Math. Japon., 1994, 39(3), 461–469 Search in Google Scholar

[8] Buşneag D., Categories of Algebraic Logic, Editura Academiei Române, Bucharest, 2006 Search in Google Scholar

[9] Buşneag D., Piciu D., On the lattice of deductive systems of a BL-algebra, Cent. Eur. J. Math., 2003, 1(2), 221–237 http://dx.doi.org/10.2478/BF0247601010.2478/BF02476010Search in Google Scholar

[10] Celani S.A., Cabrer L.M., Montangie D., Representation and duality for Hilbert algebras, Cent. Eur. J. Math., 2009, 7(3), 463–478 http://dx.doi.org/10.2478/s11533-009-0032-510.2478/s11533-009-0032-5Search in Google Scholar

[11] Chajda I., The lattice of deductive systems on Hilbert algebras, Southeast Asian Bull. Math., 2002, 26(1), 21–26 http://dx.doi.org/10.1007/s10012020002210.1007/s100120200022Search in Google Scholar

[12] Chajda I., Halaš R., Algebraic properties of pre-logics, Math. Slovaca, 2002, 52(2), 157–175 Search in Google Scholar

[13] Chajda I., Halaš R., Abbott groupoids, J. Mult.-Valued Logic Soft Comput., 2004, 10(4), 385–394 Search in Google Scholar

[14] Chajda I., Halaš R., Deductive systems and Galois connections, In: Galois Connections and Applications, Kluwer, Dordrecht, 2004, 399–411 10.1007/978-1-4020-1898-5_12Search in Google Scholar

[15] Chajda I., Halaš R., Distributive implication groupoids, Cent. Eur. J. Math., 2007, 5(3), 484–492 http://dx.doi.org/10.2478/s11533-007-0021-510.2478/s11533-007-0021-5Search in Google Scholar

[16] Chajda I., Halaš R., Kuhr J., Semilattice Structures, Heldermann, Lemgo, 2007 Search in Google Scholar

[17] Cignoli R., Algebras de Moisil de order n, Ph.D. thesis, Universidad Nacional del Sur, Bahía Blanca, 1969 Search in Google Scholar

[18] Diego A., Sobre álgebras de Hilbert, Notas de Lógica Matematica, 12, Instituto de Matemática, Univ. Nacional del Sur, Bahía Blanca, 1965 Search in Google Scholar

[19] Diego A., Sur les algèbres de Hilbert, Collection de Logique Math., Sér. A, 21, Gauthier-Villars, Paris, 1966 Search in Google Scholar

[20] Figallo A., Ziliani A., Remarks on Hertz algebras and implicative semilattices, Bull. Sect. Logic Univ. Łódź, 2005, 34(1), 37–42 Search in Google Scholar

[21] Georgescu G., Algebra logicii — logica algebrică (I), Revista de Logică, 2009, 2, available at: http://egovbus.net/rdl/articole/No1Art34.pdf Search in Google Scholar

[22] Grätzer G., Universal Algebra, 2nd ed., Springer, New York-Heidelberg, 1979 Search in Google Scholar

[23] Halaš R., Ideals and D-systems in orthoimplication algebras, J. Mult.-Valued Logic Soft Comput., 2005, 11(3–4), 309–316 Search in Google Scholar

[24] Iorgulescu A., Algebras of Logic as BCK Algebras, Editura ASE, Bucharest, 2008 Search in Google Scholar

[25] Iséki K., Tanaka S., Ideal theory of BCK-algebras, Math. Japon., 1976, 21(4), 351–366 Search in Google Scholar

[26] Jun Y.B., Deductive systems of Hilbert algebras, Math. Japon., 1996, 43(1), 51–54 Search in Google Scholar

[27] Katriňák T., Bemerkung über pseudokomplementaren halbgeordneten Mengen, Acta Fac. Rerum Natur. Univ. Comenian. Math., 1968, 19, 181–185 Search in Google Scholar

[28] Liu L.Z., Li K.T., Boolean filters and positive implicative filters of residuated lattices, Inform. Sci., 2007, 177(24), 5725–5738 http://dx.doi.org/10.1016/j.ins.2007.07.01410.1016/j.ins.2007.07.014Search in Google Scholar

[29] Monteiro A., L’arithmétique des filtres et les espaces topologiques, In: De Segundo Symposium de Matematicas-Villavicencio (Mendoza, Buenos Aires), 21–25 July 1954, Centro di Cooperacion UNESCO para America Latina, Montevideo, 129–172; Notas de Lógica Matemática, 1974, 30, 157 Search in Google Scholar

[30] Monteiro A., Sur la définition des algebres de Łukasiewicz trivalentes, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine, 1963, 7(55), 3–12 Search in Google Scholar

[31] Nemitz W.C., On the lattice of filters of an implicative semi-lattice, J. Math. Mech., 1968/69, 18, 683–688 Search in Google Scholar

[32] Pałasiński M., On ideal and congruence lattices of BCK algebras, Math. Japon., 1981, 26(5), 543–544 Search in Google Scholar

[33] Piciu D., Algebras of Fuzzy Logic, Ed. Universitaria Craiova, 2007 Search in Google Scholar

[34] Rasiowa H., An Algebraic Approach to Non-Classical Logics, North-Holland, Amsterdam, 1974 Search in Google Scholar

[35] Roman S., Lattices and Ordered Sets, Springer, New York, 2008 Search in Google Scholar

[36] Rudeanu S., On relatively pseudocomplemented posets and Hilbert algebras, An. Śtiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat., 1985, 31(suppl.), 74–77 Search in Google Scholar

[37] Rudeanu S., Localizations and fractions in algebra of logic, J. Mult.-Valued Logic Soft Comput., 2010, 16(3–5), 467–504 Search in Google Scholar

[38] Turunen E., Mathematics Behind Fuzzy Logic, Physica-Verlag, Heidelberg, 1999 Search in Google Scholar

[39] Turunen E., BL-algebras of basic fuzzy logic, Mathware Soft Comput., 1999, 6(1), 49–61 Search in Google Scholar

Published Online: 2010-7-24
Published in Print: 2010-8-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 3.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11533-010-0041-4/html
Scroll to top button