The signed k-domination number of directed graphs

Research Article

Maryam Atapour ${ }^{1}$, Seyyed Mahmoud Sheikholeslami ${ }^{1 *}$, Rana Hajypory ${ }^{2 \dagger}$, Lutz Volkmann ${ }^{3 \ddagger}$
1 Department of Mathematics, Azarbaijan University of Tarbiat Moallem, Tabriz, I.R. Iran
2 Department of Mathematics, Islamic Azad University, Branches of Heris, Heris, I.R. Iran
3 Lehrstuhl II für Mathematik, RWTH-Aachen University, Aachen, Germany

Abstract

Let $k \geq 1$ be an integer, and let $D=(V, A)$ be a finite simple digraph, for which $d_{D}^{-}(v) \geq k-1$ for all $v \in V$. A function $f: V \rightarrow\{-1,1\}$ is called a signed k-dominating function (SkDF) if $f\left(N^{-}[v]\right) \geq k$ for each vertex $v \in V$. The weight $w(f)$ of f is defined by $\sum_{v \in V} f(v)$. The signed k-domination number for a digraph D is $\gamma_{k S}(D)=\min \{w(f) \mid f$ is an SkDF of $D\}$. In this paper, we initiate the study of signed k-domination in digraphs. In particular, we present some sharp lower bounds for $\gamma_{k S}(D)$ in terms of the order, the maximum and minimum outdegree and indegree, and the chromatic number. Some of our results are extensions of well-known lower bounds of the classical signed domination numbers of graphs and digraphs.

MSC: $\quad 05 \mathrm{C} 20,05 \mathrm{C} 69,05 \mathrm{C} 45$ Keywords: Signed k-dominating function • Signed k-domination number \cdot Directed graph © Versita Sp. z o.o.

1. Introduction

In this paper, D is a finite simple digraph with vertex set $V(D)=V$ and arc set $A(G)=A$. A digraph without directed cycles of length 2 is an oriented graph. The order $n(D)=n$ of a digraph D is the number of its vertices, and the number of its arcs is the size $m(D)=m$. We write $d_{D}^{+}(v)=d^{+}(v)$ for the outdegree of a vertex v and $d_{D}^{-}(v)=d^{-}(v)$ for its indegree. The minimum and maximum indegree and minimum and maximum outdegree of D are denoted by $\delta^{-}(D)=\delta^{-}$, $\Delta^{-}(D)=\Delta^{-}, \delta^{+}(D)=\delta^{+}$and $\Delta^{+}(D)=\Delta^{+}$, respectively. If $u v$ is an arc of D, then we also write $u \rightarrow v$, and we say

[^0]that v is an out-neighbor of u and u is an in-neighbor of v. For every vertex $v \in V$, let $N_{D}^{-}(v)=N^{-}(v)$ be the set consisting of all vertices of D from which arcs go into v, and let $N_{D}^{-}[v]=N^{-}[v]=N^{-}(v) \cup\{v\}$. If $X \subseteq V(D)$, then $D[X]$ is the subdigraph induced by X. If $X \subseteq V(D)$ and $v \in V(D)$, then $E(X, v)$ is the set of arcs from X to v. For a real-valued function $f: V(D) \rightarrow \mathbb{R}$, the weight of f is $w(f)=\sum_{v \in V} f(v)$, and for $S \subseteq V$, we define $f(S)=\sum_{v \in S} f(v)$, so $w(f)=f(V)$. Consult [6] for the notation and terminology which are not defined here.

Let $k \geq 1$ be an integer and let D be a digraph such that $\delta^{-}(D) \geq k-1$. A signed k-dominating function (abbreviated SkDF) of D is a function $f: V \rightarrow\{-1,1\}$ such that $f\left(N^{-}[v]\right) \geq k$ for every $v \in V$. The signed k-domination number for a digraph D is

$$
\gamma_{k S}(D)=\min \{w(f) \mid f \text { is an } \operatorname{SkDF} \text { of } D\} .
$$

As the assumption $\delta^{-}(D) \geq k-1$ is clearly necessary, we always assume that when we discuss $\gamma_{k s}(D)$, all digraphs involved satisfy $\delta^{-}(D) \geq k-1$ and thus $n(D) \geq k$. A $\gamma_{k S}(D)$-function is an SkDF of D of weight $\gamma_{k s}(D)$. For any SkDF f of D we define $P=\{v \in V \mid f(v)=1\}$ and $M=\{v \in V \mid f(v)=-1\}$. When $k=1$, the signed k-domination number $\gamma_{k S}(D)$ is the usual signed domination number $\gamma_{S}(D)$, which was introduced by Zelinka in [7] and has been studied by several authors (see for example [3]).

The concept of the signed k-domination number $\gamma_{k S}(G)$ of undirected graphs G was introduced by Wang [5]. The special case $k=1$ was defined and investigated in [1]. In this article, we present some sharp lower bounds on the signed k-domination number of digraphs. We make use of the following results and observations.

Theorem A ([4]).
For any graph G,

$$
\chi(G) \leq 1+\max \{\delta(H) \mid H \text { is a subgraph of } G\} .
$$

Theorem B ([3]).

Let D be a digraph of order $n \geq 2$ and let r be a nonnegative integer such that $\delta^{+}(D) \geq r$. Then

$$
\gamma_{S}(D) \geq 2(\chi(G)+r+1-\Delta(G))-n
$$

where G is the underlying graph of D.

Observation 1.1.

For any digraph D of order $n \geq 2, \gamma_{k s}(D) \equiv n(\bmod 2)$.

Proof. Let f be a $\gamma_{k s}(D)$-function. Since $n=|P|+|M|$ and $\gamma_{k s}(D)=|P|-|M|$, we obtain $n-\gamma_{k s}(D)=2|M|$ and this implies the desired result.

Observation 1.2.

Let u be a vertex of indegree at most k in D. If f is an $S k D F$ on D, then f assigns 1 to each vertex of $N_{D}^{-}[u]$.

Proof. Since $f\left(N_{D}^{-}[u]\right) \geq k$ and $\left|N_{D}^{-}[u]\right| \leq k+1$, the result follows.

Observation 1.3.

If $k \geq 2$ is an integer and D a digraph with $\delta^{-}(D) \geq k-1$, then
(i) $\gamma_{k S}(D) \geq \gamma_{(k-1) S}(D)$, and
(ii) if $k \geq 3$, then $\gamma_{k S}(D) \geq \gamma_{(k-2) S}(D)+2$.

Proof. (i) Since every signed k-dominating function of D is also a signed $(k-1)$-dominating function of D, inequality (i) is proved.
(ii) Let f be a $\gamma_{k s}(D)$-function with $f(v)=1$ for $v \in P$ and $f(v)=-1$ for $v \in M$. We choose an arbitrary vertex $w \in P$ and define $P^{\prime}=P \backslash\{w\}$ and $M^{\prime}=\mathcal{M} \cup\{w\}$. In addition, we define $g: V(D) \rightarrow\{-1,1\}$ by $g(v)=1$ for $v \in P^{\prime}$ and $g(v)=-1$ for $v \in M^{\prime}$. Now it is a simple matter to verify that g is a signed $(k-2)$-dominating function of D of weight

$$
w(g)=\left|P^{\prime}\right|-\left|M^{\prime}\right|=|P|-|M|-2=\gamma_{k s}(D)-2
$$

This implies that $\gamma_{(k-2) S}(D) \leq w(g)=\gamma_{k S}(D)-2$, and the proof is complete.

The associated digraph $D(G)$ of a graph G is the digraph obtained when each edge e of G is replaced by two oppositely oriented arcs with the same ends as e. We denote the associated digraph $D\left(K_{n}\right)$ of the complete graph K_{n} of order n by K_{n}^{*}.
Let $D=K_{n}^{*}$ and let k be an integer with $1 \leq k \leq n$. It is straighforward to show that $\gamma_{k S}(D)=k$ when $n+k$ is even, and $\gamma_{k s}(D)=k+1$ when $n+k$ is odd. It follows that, if $k \geq 3$ and $n+k$ is even, then $\gamma_{k s}(D)=k, \gamma_{(k-1) S}(D)=k$ and $\gamma_{(k-2) S}(D)=k-2$, and therefore we have equality in Observation 1.3, (i) and (ii). This example demonstrates that Observation 1.3 is sharp.

Observation 1.4.

Let D be a digraph of order n. Then $\gamma_{k s}(D)=n$ if and only if $k-1 \leq \delta^{-}(D) \leq k$, and for each $v \in V(D)$ there exists a vertex $u \in N^{+}[v]$ with indegree at most k.

Proof. If $k-1 \leq \delta^{-}(D) \leq k$ and for each $v \in V(D)$ there exists a vertex $u \in N^{+}[v]$ with indegree at most k, then trivially $\gamma_{k s}(D)=n$.
Conversely, assume that $\gamma_{k S}(D)=n$. By assumption $k-1 \leq \delta^{-}(D)$. Suppose to the contrary that $\delta^{-}(D)>k$ or there exists a vertex $v \in V(D)$ such that $d^{-}(u) \geq k+1$ for each $u \in N^{+}[v]$. If $\delta^{-}(D)>k$, define $f: V(D) \rightarrow\{-1,1\}$ by $f(v)=-1$ for some fixed v and $f(x)=1$ for $x \in V(D) \backslash\{v\}$. Obviously, f is a signed k-dominating function of D with weight less than n, which is a contradiction. Thus $k-1 \leq \delta^{-}(D) \leq k$. Now let $v \in V(D)$ and $d^{-}(u) \geq k+1$ for each $u \in N^{+}[v]$. Define $f: V(D) \rightarrow\{-1,1\}$ by $f(v)=-1$ and $f(x)=1$ for $x \in V(D) \backslash\{v\}$. Again, f is a signed k-dominating function of D, which is a contradiction. This completes the proof.

Corollary 1.5.

If D is a digraph of order n such that $\Delta^{-}(D) \leq k$, then $\gamma_{k S}(D)=n$.

A tournament is a digraph in which for every pair u, v of vertices, either $u \rightarrow v$ or $v \rightarrow u$, but not both. Next we determine the exact value of the signed k-domination number for particular types of tournaments. Let n be an odd positive integer. We have $n=2 r+1$, where r is a positive integer. We define the circulant tournament CT (n) with n vertices as follows. The vertex set of $\mathrm{CT}(n)$ is $V(\mathrm{CT}(n))=\left\{u_{0}, u_{1}, \ldots, u_{n-1}\right\}$. For each i, the arcs are going from u_{i} to the vertices $u_{i+1}, u_{i+2}, \ldots, u_{i+r}$, where the indices are taken modulo n.

Proposition 1.6.

Let $n=2 r+1$ where r is a positive integer and let $1 \leq k \leq r+1$ be an integer. Then

$$
\gamma_{k S}(\mathrm{CT}(n))= \begin{cases}2 k+1 & \text { if } r \equiv k+1(\bmod 2), \\ 2 k+3 & \text { if } r \equiv k(\bmod 2) .\end{cases}
$$

Proof. If $n=3$, then obviously $\gamma_{k s}(\mathrm{CT}(n))=n$. If $k=r$ or $k=r+1$ then by Observation 1.4, $\gamma_{k s}(\mathrm{CT}(n))=n$. Thus we assume that $n \geq 5$ and $k \leq r-1$. Let f be a $\gamma_{k S}(C T(n))$-function. If $f(x)=1$ for each $x \in V(C T(n))$, then $w(f)=n \geq 2 k+1$. We may assume, without loss of generality, that $f\left(u_{0}\right)=-1$. Consider the sets $N^{-}\left[u_{0}\right]$ and $N^{-}\left[u_{r}\right]$.

Since f is an SkDF on CT (n), we have $f\left(N^{-}\left[u_{0}\right]\right) \geq k, f\left(N^{-}\left[u_{r}\right]\right) \geq k$ if $r \equiv k+1(\bmod 2)$ and $f\left(N^{-}\left[u_{0}\right]\right) \geq k+1$, $f\left(N^{-}\left[u_{r}\right]\right) \geq k+1$ when $r \equiv k(\bmod 2)$. Therefore

$$
\omega(f)=f(V(\mathrm{CT}(n)))=f\left(N^{-}\left[u_{0}\right]\right)+f\left(N^{-}\left[u_{r}\right]\right)-f\left(u_{0}\right) \geq \begin{cases}2 k+1 & \text { if } r \equiv k+1(\bmod 2), \\ 2 k+3 & \text { if } r \equiv k(\bmod 2) .\end{cases}
$$

This implies that

$$
y_{k S}(\mathrm{CT}(n)) \geq \begin{cases}2 k+1 & \text { if } r \equiv k+1(\bmod 2) \\ 2 k+3 & \text { if } r \equiv k(\bmod 2) .\end{cases}
$$

Suppose now that $s=\left\lfloor\frac{r-k-1}{2}\right\rfloor, V^{-}=\left\{u_{1}, \ldots, u_{s}, u_{r+1}, \ldots, u_{r+s}\right\}$ and $V^{+}=V(\mathrm{CT}(n))-V^{-}$. Define $f: V(\mathrm{CT}(n)) \rightarrow$ $\{-1,1\}$ by $f\left(u_{0}\right)=-1, f(v)=1$ if $v \in V^{+}$and $f(v)=-1$ when $v \in V^{-}$. For any vertex $v \in V(C T(n))$ we have $\left|N^{-}[v]\right|=r+1$ and $\left|N^{-}[v] \cap V^{-}\right| \leq s+1$. Therefore $f\left(N^{-}[v]\right)=r-2 s-1 \geq k$ and so f is an SkDF on CT (n). Now we have

$$
\gamma_{k S}(\mathrm{CT}(n)) \leq \omega(f)= \begin{cases}2 k+1 & \text { if } r \equiv k+1(\bmod 2) \\ 2 k+3 & \text { if } r \equiv k(\bmod 2)\end{cases}
$$

This completes the proof.

2. Lower bounds on signed k-domination numbers of digraphs

In this section we present some sharp lower bounds for $\gamma_{k s}(D)$ in terms of the order, the maximum and minimum outdegree and indegree, and the chromatic number of D. Recall that the complement of a graph G is denoted as \bar{G}.

Theorem 2.1.

Let $k \geq 1$ be an integer, and let D be a digraph of order $n \geq k+1$ with $\delta^{-}(D) \geq k-1$. Then

$$
\gamma_{k s}(D) \geq 2(k+1)-n,
$$

with equality if and only if D is $H \vee \overline{K_{n-k-1}}$, where H is a digraph of order $k+1$ with $\delta^{-}(H) \geq k-1$ such that $u \rightarrow v$ for each $u \in V(H)$ and each $v \in V\left(\overline{K_{n-k-1}}\right)$. Also, if $d_{H}^{-}(w)=k-i$ with $i=0,1$ for a vertex $w \in V(H)$, then there are at most i arcs from $V\left(\overline{K_{n-k-1}}\right)$ to w.

Proof. Let f be an Sk DF of D. If f assigns 1 to each vertex, then the statement is true, since $n \geq k+1$. Now assume that there exists a vertex $v \in V$ with $f(v)=-1$. Then f assigns 1 to at least $k+1$ vertices in $N_{D}^{-}(v)$ and so $|M| \leq n-k-1$. Thus

$$
\gamma_{k S}(D)=|P|-|M| \geq k+1-(n-k-1)=2(k+1)-n,
$$

as desired.
Let H be a digraph of order $k+1$ with $\delta^{-}(H) \geq k-1$ such that $u \rightarrow v$ for each $u \in V(H)$ and each $v \in V\left(\overline{K_{n-k-1}}\right)$. If D is $H \vee \overline{K_{n-k-1}}$, and if for every vertex $w \in V(H)$ with $d_{H}^{-}(w)=k-i$ for $i=0,1$, there are at most i arcs from $V\left(\overline{K_{n-k-1}}\right)$ to w, then we define $f: V(D) \rightarrow\{-1,1\}$ by $f(v)=1$ if $v \in V(H)$ and $f(v)=-1$ if $v \in V\left(\overline{K_{n-k-1}}\right)$. It is straightforward to verify that f is an SkDF of D with $w(f)=2(k+1)-n$ and hence $\gamma_{k S}(D)=2(k+1)-n$.

Now let D be a digraph such that $\gamma_{k S}(D)=2(k+1)-n$. Let f be an SkDF of D. Then $|P|=k+1$ and $|M|=n-k-1$. Define H by $D[P]$. Since $f\left(N_{D}^{-}[x]\right) \geq k$ for every vertex x, we deduce that $\delta^{-}(H) \geq k-1, u \rightarrow v$ for each $u \in V(H)$ and each $v \in M$ and M is an independent set. In addition, we observe that for every vertex $w \in V(H)$ with $d_{H}^{-}(w)=k$, an arbitrary arc from M to w is admissible. This completes the proof.

For oriented graphs we now present a sharper lower bound on the signed k-domination number when $k \geq 2$.

Theorem 2.2.

Let $k \geq 2$ be an integer, and let D be an oriented graph of order n with $\delta^{-}(D) \geq k-1$. Then

$$
\gamma_{k S}(D) \geq 2(2 k-1)-n,
$$

with equality if and only if D consists of an arbitrary $(k-1)$-regular tournament $T_{2 k-1}$ and a set W of $n-(2 k-1)$ further vertices, such that each $w \in W$ has at least $k+1$ in-neighbors in $T_{2 k-1}$ and there is no arc from W to $T_{2 k-1}$. Also, if a vertex $w \in W$ has $k+1 \leq t \leq 2 k-1$ in-neighbors in $T_{2 k-1}$, then w has at most $t-k-1$ in-neighbors in W.

Proof. Let f be an SkDF of D. Each vertex $v \in P$ has at least $k-1$ in-neighbors in P. This implies that

$$
\frac{|P|(|P|-1)}{2} \geq|A(D[P])| \geq(k-1)|P|,
$$

and thus $|P| \geq 2 k-1$. Therefore $|M| \leq n-2 k+1$, and we obtain the desired bound as follows,

$$
\gamma_{k S}(D)=|P|-|M| \geq 2 k-1-(n-2 k+1)=2(2 k-1)-n .
$$

Assume that D consists of an arbitrary $(k-1)$-regular tournament $T_{2 k-1}$ and a set W of $n-(2 k-1)$ further vertices, such that each $w \in W$ has at least $k+1$ in-neighbors in $T_{2 k-1}$, and there is no arc from W to $T_{2 k-1}$. Also, assume that if a vertex $w \in W$ has $k+1 \leq t \leq 2 k-1$ in-neighbors in $T_{2 k-1}$, then w has at most $t-k-1$ in-neighbors in W. We define $f: V(D) \rightarrow\{-1,1\}$ by $f(v)=1$ if $v \in V\left(T_{2 k-1}\right)$ and $f(v)=-1$ if $v \in W$. It is easy to see that f is an SkDF of D with $w(f)=2(2 k-1)-n$, and so $\gamma_{k s}(D)=2(2 k-1)-n$.

Now let D be a digraph such that $\gamma_{k S}(D)=2(2 k-1)-n$. If f is an SkDF of D, then $|P|=2 k-1$ and $|M|=n-2 k+1$. Define T by $D[P]$. Since $f\left(N_{D}^{-}[x]\right) \geq k$ for every vertex x, we deduce that $\delta^{-}(T) \geq k-1$, and therefore it follows that

$$
(k-1)(2 k-1) \leq \sum_{v \in V(T)} \delta^{-}(T) \leq \sum_{v \in V(T)} d_{T}^{-}(v)=|A(T)| \leq \frac{n(T)(n(T)-1)}{2}=(k-1)(2 k-1)
$$

Hence we have equality in this inequality chain, and thus T is a tournament such that $d_{T}^{-}(x)=k-1$ for each $x \in V(T)$. Because $d_{T}^{+}(x)+d_{T}^{-}(x)=n(T)-1=2 k-2$, for each $x \in V(T)$, we conclude that T is a $(k-1)$-regular tournament. Now it follows that there is no arc from M to P, every vertex in M has at least $k+1$ in-neighbors in P, and if a vertex $w \in M$ has $k+1 \leq t \leq 2 k-1$ in-neighbors in P, then w has at most $t-k-1$ in-neighbors in M.

Theorem 2.3.

Let $k \geq 1$ be an integer, and let D be a digraph of order n with $\delta^{-}(D) \geq k-1$. Then

$$
\gamma_{k s}(D) \geq n \frac{2\left\lceil\frac{\delta^{-}(D)+k+1}{2}\right\rceil-1-\Delta^{+}(D)}{\Delta^{+}(D)+1} .
$$

Proof. Let f be a $\gamma_{k S}(D)$-function, and let s be the number of arcs from the set P to the set M. The condition $f\left(N^{-}[x]\right) \geq k$ implies that $|E(P, x)| \geq|E(M, x)|+k-1$ for $x \in P$, and $|E(P, x)| \geq|E(M, x)|+k+1$ for $x \in M$. Thus we obtain

$$
\delta^{-}(D) \leq d^{-}(x)=|E(P, x)|+|E(M, x)| \leq 2|E(P, x)|-k-1,
$$

and so $|E(P, x)| \geq\left\lceil\frac{\delta^{-}(D)+k+1}{2}\right\rceil$ for each vertex $x \in M$. Hence we deduce that

$$
\begin{equation*}
s=\sum_{x \in M}|E(P, x)| \geq \sum_{x \in M}\left\lceil\frac{\delta^{-}(D)+k+1}{2}\right\rceil=|M|\left\lceil\frac{\delta^{-}(D)+k+1}{2}\right\rceil . \tag{1}
\end{equation*}
$$

Since $|E(P, x)| \geq\left\lceil\frac{\delta^{-}(D)+k-1}{2}\right\rceil$ for $x \in P$, it follows that $|E(D[P])|=\sum_{y \in P}|E(P, y)| \geq|P|\left\lceil\frac{\delta^{-}(D)+k-1}{2}\right\rceil$, and so we conclude that

$$
\begin{equation*}
s=\sum_{y \in P} d^{+}(y)-|E(D[P])| \leq \sum_{y \in P} d^{+}(y)-|P|\left\lceil\frac{\delta^{-}(D)+k-1}{2}\right\rceil \leq|P| \Delta^{+}(D)-|P|\left\lceil\frac{\delta^{-}(D)+k-1}{2}\right\rceil \tag{2}
\end{equation*}
$$

Inequalities (1) and (2) imply that

$$
|M| \leq \frac{|P| \Delta^{+}(D)-|P|\left\lceil\frac{\delta^{-}(D)+k-1}{2}\right\rceil}{\left\lceil\frac{\delta^{-}(D)+k+1}{2}\right\rceil}
$$

Since $\gamma_{k s}(D)=|P|-|M|$ and $n=|P|+|M|$, the last inequality leads to

$$
\gamma_{k S}(D) \geq|P|-\frac{|P| \Delta^{+}(D)-|P|\left\lceil\frac{\delta^{-}(D)+k-1}{2}\right\rceil}{\left\lceil\frac{\delta^{-}(D)+k+1}{2}\right\rceil}=\frac{n+\gamma_{k S}(D)}{2} \cdot \frac{2\left\lceil\frac{\delta^{-}(D)+k+1}{2}\right\rceil-1-\Delta^{+}(D)}{\left\lceil\frac{\delta^{-}(D)+k+1}{2}\right\rceil}
$$

and this yields the desired result.

To see the sharpness of the last result, let $D=K_{n}^{*}$. If $k=n$ or $k=n-1$, then Theorem 2.3 leads to $\gamma_{k S}(D) \geq n$, and thus $\gamma_{k S}(D)=n$.
If $D(G)$ is the associate digraph of a graph G, then $N_{D(G)}^{-}(v)=N_{G}(v)$ for each $v \in V(G)=V(D(G))$. Thus the following useful observation is valid.

Observation 2.4

If $D(G)$ is the associate digraph of a graph G, then $\gamma_{k S}(D(G))=\gamma_{k s}(G)$.

There are many interesting applications of Observation 2.4, such as the following two results.

Corollary 2.5.

Let $k \geq 1$ be an integer, and let G be a graph of order n with $\delta(G) \geq k-1$. Then

$$
\gamma_{k S}(G) \geq n \frac{2\left\lceil\frac{\delta(G)+k+1}{2}\right\rceil-1-\Delta(G)}{\Delta(G)+1}
$$

Proof. Since $\delta(G)=\delta^{-}(D(G)), \Delta(G)=\Delta^{+}(D(G))$ and $n=n(D(G))$, it follows from Theorem 2.3 and Observation 2.4 that

$$
\gamma_{k S}(G)=\gamma_{k S}(D(G)) \geq \frac{2\left\lceil\frac{\delta^{-}(D(G))+k+1}{2}\right\rceil-1-\Delta^{+}(D(G))}{\Delta^{+}(D(G))+1} n=\frac{2\left\lceil\frac{\delta(G)+k+1}{2}\right\rceil-1-\Delta(G)}{\Delta(G)+1} n .
$$

Corollary 2.6 ([5]).
Let $k \geq 1$ be an integer, and let G be an r-regular graph of order n with $r \geq k-1$. Then $\gamma_{k S}(G) \geq \frac{k n}{r+1}$ if $k+r+1$ is even, and $\gamma_{k S}(G) \geq \frac{(k+1) n}{r+1}$ if $k+r+1$ is odd.

The special case $k=1$ in Corollary 2.6 can be found in [1] and [2]. Counting the arcs from M to P, we next prove an analogue to Theorem 2.3.

Theorem 2.7.

Let $k \geq 1$ be an integer, and let D be a digraph of order n with $\delta^{-}(D) \geq k-1$. Then

$$
\gamma_{k s}(D) \geq n \frac{\delta^{+}(D)+1-2\left\lfloor\frac{\Delta^{-}(D)-k+1}{2}\right\rfloor}{\delta^{+}(D)+1}
$$

Proof. Let f be a $\gamma_{k s}(D)$-function, and let s be the number of arcs from M to P. If $x \in P$, then

$$
\Delta^{-}(D) \geq d^{-}(x)=|E(P, x)|+|E(M, x)| \geq 2|E(M, x)|+k-1
$$

and thus $|E(M, x)| \leq\left\lfloor\frac{\Delta^{-}(D)-k+1}{2}\right\rfloor$ for each $x \in P$. Hence we deduce that

$$
\begin{equation*}
s=\sum_{x \in P}|E(M, x)| \leq|P|\left\lfloor\frac{\Delta^{-}(D)-k+1}{2}\right\rfloor . \tag{3}
\end{equation*}
$$

If $x \in M$, then

$$
\Delta^{-}(D) \geq d^{-}(x)=|E(P, x)|+|E(M, x)| \geq 2|E(M, x)|+k+1
$$

and thus $|E(M, x)| \leq\left\lfloor\frac{\Delta^{-}(D)-k-1}{2}\right\rfloor$ for each $x \in \mathcal{M}$. It follows that

$$
\begin{equation*}
s=\sum_{y \in M} d^{+}(y)-|E(D[M])| \geq|M| \delta^{+}(D)-|M|\left\lfloor\frac{\Delta^{-}(D)-k-1}{2}\right\rfloor . \tag{4}
\end{equation*}
$$

Inequalities (3) and (4) imply that

$$
|P| \geq \frac{|M| \delta^{+}(D)-|M|\left\lfloor\frac{\Delta^{-}(D)-k-1}{2}\right\rfloor}{\left\lfloor\frac{\Delta^{-}(D)-k+1}{2}\right\rfloor}
$$

Since $\gamma_{k S}(D)=|P|-|M|$ and $n=|P|+|M|$, the last inequality leads to

$$
\gamma_{k S}(D) \geq \frac{|M| \delta^{+}(D)-|M|\left\lfloor\frac{\Delta^{-}(D)-k-1}{2}\right\rfloor}{\left\lfloor\frac{\Delta^{-}(D)-k+1}{2}\right\rfloor}-|M|=\frac{n-\gamma_{k s}(D)}{2} \cdot \frac{\delta^{+}(D)-2\left\lfloor\frac{\Delta^{-}(D)-k+1}{2}\right\rfloor+1}{\left\lfloor\frac{\Delta^{-}(D)-k+1}{2}\right\rfloor},
$$

and this yields the desired result immediately.
Using Observation 2.4 and Theorem 2.7, we obtain an analogue to Corollary 2.5, and this also leads to Corollary 2.6.

Theorem 2.8.

Let $k \geq 1$ be an integer, and let D be a digraph of order n with $\delta^{-}(D) \geq k-1$. Then

$$
\gamma_{k s}(D) \geq \frac{\delta^{+}(D)+2 k-\Delta^{+}(D)}{\delta^{+}(D)+\Delta^{+}(D)+2} n .
$$

Proof. If f is a $\gamma_{k S}(D)$-function, then

$$
\begin{aligned}
n k & =\sum_{x \in V} k \leq \sum_{x \in V} f\left(N^{-}[x]\right)=\sum_{x \in V}\left(d^{+}(x)+1\right) f(x)=\sum_{x \in P}\left(d^{+}(x)+1\right)-\sum_{x \in M}\left(d^{+}(x)+1\right) \\
& \leq|P|\left(\Delta^{+}(D)+1\right)-|M|\left(\delta^{+}(D)+1\right)=|P|\left(\Delta^{+}(D)+\delta^{+}(D)+2\right)-n\left(\delta^{+}(D)+1\right) .
\end{aligned}
$$

This implies that

$$
|P| \geq \frac{n\left(\delta^{+}(D)+k+1\right)}{\delta^{+}(D)+\Delta^{+}(D)+2}
$$

and hence we obtain the desired bound as follows,

$$
\gamma_{k S}(D)=|P|-|M|=2|P|-n \geq \frac{2 n\left(\delta^{+}(D)+k+1\right)}{\delta^{+}(D)+\Delta^{+}(D)+2}-n=\frac{\delta^{+}(D)+2 k-\Delta^{+}(D)}{\delta^{+}(D)+\Delta^{+}(D)+2} n .
$$

Using Observation 2.4, we obtain the following analogue for graphs.

Corollary 2.9.

If $k \geq 1$ is an integer, and G is a graph of order n with $\delta(G) \geq k-1$, then

$$
\gamma_{k s}(G) \geq \frac{\delta(G)+2 k-\Delta(G)}{\delta(G)+\Delta(G)+2} n .
$$

We note that Corollary 2.9 immediately implies a 1999 result by Zhang, Xu, Li and Liu [8] for the case $k=1$.

Theorem 2.10.

Let $k \geq 1$ be an integer, and let D be a digraph of order n with $\delta^{-}(D) \geq k-1$. Then

$$
\gamma_{k s}(D) \geq \frac{k n+|A(D)|-n \Delta^{+}(D)}{\Delta^{+}(D)+1}
$$

Proof. If f is a $\gamma_{k s}(D)$-function, then

$$
\begin{aligned}
n k & \leq \sum_{x \in V} f\left(N^{-}[x]\right)=\sum_{x \in V}\left(d^{+}(x)+1\right) f(x)=\sum_{x \in P}\left(d^{+}(x)+1\right)-\sum_{x \in M}\left(d^{+}(x)+1\right) \\
& =2 \sum_{x \in P}\left(d^{+}(x)+1\right)-\sum_{x \in V}\left(d^{+}(x)+1\right) \leq 2|P|\left(\Delta^{+}(D)+1\right)-|A(D)|-n
\end{aligned}
$$

This implies that

$$
|P| \geq \frac{(k+1) n+|A(D)|}{2 \Delta^{+}(D)+2}
$$

and hence we obtain the desired bound as follows,

$$
\gamma_{k S}(D)=|P|-|M|=2|P|-n \geq \frac{(k+1) n+|A(D)|}{\Delta^{+}(D)+1}-n=\frac{k n+|A(D)|-n \Delta^{+}(D)}{\Delta^{+}(D)+1} .
$$

Theorem 2.11.

Let $r \geq k \geq 1$ be integers, and let D be a digraph of order $n \geq 2$ such that $\delta^{-}(D) \geq k-1$ and $\delta^{+}(D) \geq r$. Then

$$
\gamma_{k s}(D) \geq 2(\chi(G)+k+r-\Delta(G))-n
$$

where G is the underlying graph of D.

Proof. By Theorem B, we may assume that $k \geq 2$. If $\Delta^{-}(D) \leq k$, then $d^{+}(x)=d^{-}(x)=k$ for each $x \in V(D)$, and by Observation 1.4, $\gamma_{k s}(D)=n$. The result follows. If $\Delta^{-}(D) \geq k+1$, then $\Delta(G) \geq 2 k+1$.
Let $\alpha=\frac{\Delta(G)-r-k-1}{2}$. We claim that $r \leq \Delta(G)-k-1$. Suppose to the contrary that $r \geq \Delta(G)-k$. Since $d^{+}(x)+d^{-}(x) \leq$ $\Delta(G)$, by the assumption we have $d^{-}(x) \leq k$ for each $x \in V(D)$. Thus

$$
n(\Delta(G)-k) \leq \sum_{x \in V(D)} d^{+}(x)=\sum_{x \in V(D)} d^{-}(x) \leq n k
$$

which implies that $\Delta(G) \leq 2 k$. This is a contradiction, and therefore $\alpha \geq 0$. For each $x \in M,|E(P, x)| \geq|E(M, x)|+k+1$, and so

$$
\Delta(G) \geq \operatorname{deg}(x)=|E(P, x)|+|E(M, x)|+d^{+}(x) \geq r+2|E(M, x)|+k+1,
$$

which implies $|E(M, x)| \leq \alpha$. Let $H=D[\mathcal{M}]$ be the subdigraph induced by M and let $H^{\prime}=G[M]$ be the underlying graph of H.

Suppose H_{1} is an induced subgraph of H. Then $d_{H_{1}}^{-}(x) \leq|E(M, x)| \leq \alpha$ for each $x \in V\left(H_{1}\right)$, and hence $\sum_{x \in V\left(H_{1}\right)} d_{H_{1}}^{+}(x)=$ $\sum_{x \in V\left(H_{1}\right)} d_{H_{1}}^{-}(x) \leq \alpha\left|V\left(H_{1}\right)\right|$. Therefore there exists a vertex $x \in V\left(H_{1}\right)$ such that $d_{H_{1}}^{+}(x) \leq \alpha$. This implies that $\delta\left(H_{1}^{\prime}\right) \leq 2 \alpha$, where H_{1}^{\prime} is the underlying graph of H_{1}. By Theorem A,

$$
\begin{aligned}
\chi\left(H^{\prime}\right) & \leq 1+\max \left\{\delta\left(H^{\prime \prime}\right) \mid H^{\prime \prime} \text { is a subgraph of } H^{\prime}\right\} \\
& =1+\max \left\{\delta\left(H_{1}^{\prime}\right) \mid H_{1}^{\prime} \text { is an induced subgraph of } H^{\prime}\right\} \leq 1+2 \alpha .
\end{aligned}
$$

Since $2|P|-n=\gamma_{k s}(D)$, it follows that

$$
\chi(G) \leq \chi(G[P])+\chi(G[M]) \leq|P|+1+2 \alpha=1+2 \alpha+\frac{n+\gamma_{k s}(D)}{2}
$$

Thus

$$
\gamma_{k s}(D) \geq 2(\chi(G)+k+r-\Delta(G))-n,
$$

as required.

Theorem 2.12.

Let D be a digraph of order n and size m, and let G be the underlying graph of D. Then $\gamma_{k s}(D) \geq n k-m$. Furthermore, the bound is sharp.

Proof. Let f be a $\gamma_{k S}(D)$-function and t be the number of arcs from the set P to the set M. Then

$$
\begin{equation*}
t=\sum_{x \in M}|E(P, x)| \geq \sum_{x \in M}(k+1)=|M|(k+1)=(n-|P|)(k+1) . \tag{5}
\end{equation*}
$$

On the other hand, $m \geq t+|E(P, P)|$. Since $|E(P, P)| \geq|P|(k-1)$, we have $m \geq(n-|P|)(k+1)+|P|(k-1)$ and thus $|P| \geq \frac{n(k+1)-m}{2}$. Since $\gamma_{k s}(D)=2|P|-n$, the result follows.

To prove the sharpness, note that if $k=n$, the bound is sharp for K_{n}^{*}. Thus we may assume $k \leq n-1$. Suppose that C is a directed Hamiltonian cycle in K_{k+1}^{*} and consider the digraph $D=\left(K_{k+1}^{*}-E(C)\right) \vee \overline{K_{n-k-1}}$ where the edges are oriented from $V\left(K_{k+1}^{*}-E(C)\right)$ to $V\left(\overline{K_{n-k-1}}\right)$. Define $f: V(D) \rightarrow\{-1,1\}$ by $f(v)=1$ if $v \in V\left(K_{k+1}^{*}-E(C)\right)$ and $f(v)=-1$ if $v \in V\left(\overline{K_{n-k-1}}\right)$. Obviously, f is an SkDF of D and $w(f)=n k-m$ where m is the size of D. Hence, $\gamma_{k S}(D)=n k-m$. This completes the proof.

Theorem 2.13.

Let D be a digraph of order n with outdegree sequence $d_{1}^{+} \geq d_{2}^{+} \geq \cdots \geq d_{n}^{+}$and let s be the smallest positive integer for which $\sum_{i=1}^{s} d_{i}^{+}-\sum_{i=s+1}^{n} d_{i}^{+} \geq(k+1) n-2 s$. Then $\gamma_{k s}(D) \geq 2 s-n$. Furthermore, this bound is sharp.

Proof. Let f be a $\gamma_{k S}(D)$-function and $p=|P|$. We have

$$
\begin{aligned}
k n & \leq \sum_{x \in V} f\left(N_{D}^{-}[x]\right)=\sum_{x \in V}\left(d^{+}(x)+1\right) f(x)=\sum_{x \in P}\left(d^{+}(x)+1\right)-\sum_{x \in M}\left(d^{+}(x)+1\right) \\
& \leq|P|-|M|+\left(\sum_{x \in P} d^{+}(x)-\sum_{x \in M} d^{+}(x)\right) \leq 2 p-n+\left(\sum_{i=1}^{p} d_{i}^{+}-\sum_{i=p+1}^{n} d_{i}^{+}\right) .
\end{aligned}
$$

Thus $(k+1) n-2 p \leq \sum_{i=1}^{p} d_{i}^{+}-\sum_{i=p+1}^{n} d_{i}^{+}$. By the assumption on s, we must have $p \geq s$. This implies that $\gamma_{k S}(D)=2 p-n \geq 2 s-n$.
In order to show that the bound is sharp, suppose that C is a directed Hamiltonian cycle in K_{k+1}^{*} and consider the digraph $D=\left(K_{k+1}^{*}-E(C)\right) \vee \overline{K_{n-k-1}}$ where the edges are oriented from $V\left(K_{k+1}^{*}-E(C)\right)$ to $V\left(\overline{K_{n-k-1}}\right)$. By Theorem 2.12, $\gamma_{k s}(D)=2(k+1)-n$. Since the outdegree sequence of D is

$$
\overbrace{n-2, \ldots, n-2}^{k+1}, \overbrace{0 \ldots, 0}^{n-k-1}
$$

and $(n-2)(k+1)=n(k+1)-2(k+1)$, it follows that $k+1$ is the smallest positive integer such that $\sum_{i=1}^{s} d_{i}^{+}-\sum_{i=s+1}^{n} d_{i}^{+} \geq$ $n(k+1)-2(k+1)$, and so $\gamma_{k S}(D) \geq 2(k+1)-n$. This completes the proof.

The special case $k=1$ in Theorems 2.12 and 2.13 was recently proved by Karami, Khodkar and Sheikholeslami in [3].

References

[1] Dunbar J.E., Hedetniemi S.T., Henning M.A., Slater P.J., Signed domination in graphs, In: Graph Theory, Combinatorics, and Algorithms, 1, Kalamazoo, 1992, Wiley-Intersci. Publ., Wiley, New York, 1995, 311-321
[2] Henning M.A., Slater P.J., Inequalities relating domination parameters in cubic graphs, Discrete Math., 1996, 158(1-3), 87-98
[3] Karami H., Sheikholeslami S.M., Khodkar A., Lower bounds on the signed domination numbers of directed graphs, Discrete Math., 2009, 309(8), 2567-2570
[4] Szekeres G., Wilf H.S., An inequality for the chromatic number of a graph, J. Combin. Theory, 1968, 4, 1-3
[5] Wang C.P., The signed k-domination numbers in graphs, Ars Combin. (in press)
[6] West D.B., Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle River, 2000
[7] Zelinka B., Signed domination numbers of directed graphs, Czechoslovak Math. J., 2005, 55(130)(2), 479-482
[8] Zhang Z., Xu B., Li Y., Liu L., A note on the lower bounds of signed domination number of a graph, Discrete Math., 1999, 195(1-3), 295-298

[^0]: * E-mail: s.m.sheikholeslami@azaruniv.edu
 + E-mail: info@herisiau.ac.ir
 \# E-mail: volkm@math2.rwth-aachen.de

