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Abstract: Let k ≥ 1 be an integer, and let D = (V , A) be a finite simple digraph, for which d−D(v) ≥ k − 1 for all v ∈ V .
A function f : V → {−1, 1} is called a signed k-dominating function (SkDF) if f(N−[v ]) ≥ k for each vertex
v ∈ V . The weight w(f) of f is defined by

∑
v∈V f(v). The signed k-domination number for a digraph D is

γkS (D) = min {w(f) | f is an SkDF of D}. In this paper, we initiate the study of signed k-domination in digraphs.
In particular, we present some sharp lower bounds for γkS (D) in terms of the order, the maximum and minimum
outdegree and indegree, and the chromatic number. Some of our results are extensions of well-known lower
bounds of the classical signed domination numbers of graphs and digraphs.
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1. Introduction

In this paper, D is a finite simple digraph with vertex set V (D) = V and arc set A(G) = A. A digraph without directed
cycles of length 2 is an oriented graph. The order n(D) = n of a digraph D is the number of its vertices, and the number
of its arcs is the size m(D) = m. We write d+

D(v) = d+(v) for the outdegree of a vertex v and d−D(v) = d−(v) for its
indegree. The minimum and maximum indegree and minimum and maximum outdegree of D are denoted by δ−(D) = δ−,
∆−(D) = ∆−, δ+(D) = δ+ and ∆+(D) = ∆+, respectively. If uv is an arc of D, then we also write u → v , and we say
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that v is an out-neighbor of u and u is an in-neighbor of v . For every vertex v ∈ V , let N−D (v) = N−(v) be the set
consisting of all vertices of D from which arcs go into v , and let N−D [v ] = N−[v ] = N−(v)∪{v}. If X ⊆ V (D), then D[X ] is
the subdigraph induced by X . If X ⊆ V (D) and v ∈ V (D), then E(X, v) is the set of arcs from X to v . For a real-valued
function f : V (D)→ R, the weight of f is w(f) =

∑
v∈V f(v), and for S ⊆ V , we define f(S) =

∑
v∈S f(v), so w(f) = f(V ).

Consult [6] for the notation and terminology which are not defined here.

Let k ≥ 1 be an integer and let D be a digraph such that δ−(D) ≥ k − 1. A signed k-dominating function (abbreviated
SkDF) of D is a function f : V → {−1, 1} such that f(N−[v ]) ≥ k for every v ∈ V . The signed k-domination number for
a digraph D is

γkS(D) = min
{
w(f) | f is an SkDF of D

}
.

As the assumption δ−(D) ≥ k − 1 is clearly necessary, we always assume that when we discuss γkS(D), all digraphs
involved satisfy δ−(D) ≥ k − 1 and thus n(D) ≥ k . A γkS(D)-function is an SkDF of D of weight γkS(D). For any SkDF
f of D we define P = {v ∈ V | f(v) = 1} and M = {v ∈ V | f(v) = −1}. When k = 1, the signed k-domination number
γkS(D) is the usual signed domination number γS(D), which was introduced by Zelinka in [7] and has been studied by
several authors (see for example [3]).

The concept of the signed k-domination number γkS(G) of undirected graphs G was introduced by Wang [5]. The special
case k = 1 was defined and investigated in [1]. In this article, we present some sharp lower bounds on the signed
k-domination number of digraphs. We make use of the following results and observations.

Theorem A ([4]).
For any graph G,

χ(G) ≤ 1 + max
{
δ(H) | H is a subgraph of G

}
.

Theorem B ([3]).
Let D be a digraph of order n ≥ 2 and let r be a nonnegative integer such that δ+(D) ≥ r. Then

γS(D) ≥ 2
(
χ(G) + r + 1− ∆(G)

)
− n,

where G is the underlying graph of D.

Observation 1.1.
For any digraph D of order n ≥ 2, γkS(D) ≡ n (mod 2).

Proof. Let f be a γkS(D)-function. Since n = |P|+ |M| and γkS(D) = |P| − |M|, we obtain n − γkS(D) = 2|M| and
this implies the desired result.

Observation 1.2.
Let u be a vertex of indegree at most k in D. If f is an SkDF on D, then f assigns 1 to each vertex of N−D [u].

Proof. Since f(N−D [u]) ≥ k and |N−D [u]| ≤ k + 1, the result follows.

Observation 1.3.
If k ≥ 2 is an integer and D a digraph with δ−(D) ≥ k − 1, then

(i) γkS(D) ≥ γ(k−1)S(D), and

(ii) if k ≥ 3, then γkS(D) ≥ γ(k−2)S(D) + 2.
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Proof. (i) Since every signed k-dominating function of D is also a signed (k −1)-dominating function of D, inequality
(i) is proved.

(ii) Let f be a γkS(D)-function with f(v) = 1 for v ∈ P and f(v) = −1 for v ∈ M. We choose an arbitrary vertex w ∈ P
and define P ′ = P \ {w} and M ′ = M ∪ {w}. In addition, we define g : V (D) → {−1, 1} by g(v) = 1 for v ∈ P ′ and
g(v) = −1 for v ∈ M ′. Now it is a simple matter to verify that g is a signed (k − 2)-dominating function of D of weight

w(g) = |P ′| − |M ′| = |P| − |M| − 2 = γkS(D)− 2.

This implies that γ(k−2)S(D) ≤ w(g) = γkS(D)− 2, and the proof is complete.

The associated digraph D(G) of a graph G is the digraph obtained when each edge e of G is replaced by two oppositely
oriented arcs with the same ends as e. We denote the associated digraph D(Kn) of the complete graph Kn of order n
by K ∗n .

Let D = K ∗n and let k be an integer with 1 ≤ k ≤ n. It is straighforward to show that γkS(D) = k when n+ k is even,
and γkS(D) = k + 1 when n + k is odd. It follows that, if k ≥ 3 and n + k is even, then γkS(D) = k , γ(k−1)S(D) = k
and γ(k−2)S(D) = k − 2, and therefore we have equality in Observation 1.3, (i) and (ii). This example demonstrates that
Observation 1.3 is sharp.

Observation 1.4.
Let D be a digraph of order n. Then γkS(D) = n if and only if k − 1 ≤ δ−(D) ≤ k, and for each v ∈ V (D) there exists a
vertex u ∈ N+[v ] with indegree at most k.

Proof. If k − 1 ≤ δ−(D) ≤ k and for each v ∈ V (D) there exists a vertex u ∈ N+[v ] with indegree at most k , then
trivially γks(D) = n.

Conversely, assume that γkS(D) = n. By assumption k − 1 ≤ δ−(D). Suppose to the contrary that δ−(D) > k or there
exists a vertex v ∈ V (D) such that d−(u) ≥ k + 1 for each u ∈ N+[v ]. If δ−(D) > k , define f : V (D) → {−1, 1} by
f(v) = −1 for some fixed v and f(x) = 1 for x ∈ V (D) \ {v}. Obviously, f is a signed k-dominating function of D with
weight less than n, which is a contradiction. Thus k − 1 ≤ δ−(D) ≤ k . Now let v ∈ V (D) and d−(u) ≥ k + 1 for each
u ∈ N+[v ]. Define f : V (D)→ {−1, 1} by f(v) = −1 and f(x) = 1 for x ∈ V (D) \ {v}. Again, f is a signed k-dominating
function of D, which is a contradiction. This completes the proof.

Corollary 1.5.
If D is a digraph of order n such that ∆−(D) ≤ k, then γkS(D) = n.

A tournament is a digraph in which for every pair u, v of vertices, either u → v or v → u, but not both. Next we
determine the exact value of the signed k-domination number for particular types of tournaments. Let n be an odd
positive integer. We have n = 2r + 1, where r is a positive integer. We define the circulant tournament CT (n) with n
vertices as follows. The vertex set of CT (n) is V (CT (n)) = {u0, u1, . . . , un−1}. For each i, the arcs are going from ui to
the vertices ui+1, ui+2, . . . , ui+r , where the indices are taken modulo n.

Proposition 1.6.
Let n = 2r + 1 where r is a positive integer and let 1 ≤ k ≤ r + 1 be an integer. Then

γkS(CT (n)) =
{

2k + 1 if r ≡ k + 1 (mod 2),
2k + 3 if r ≡ k (mod 2).

Proof. If n = 3, then obviously γkS(CT (n)) = n. If k = r or k = r + 1 then by Observation 1.4, γkS(CT (n)) = n.
Thus we assume that n ≥ 5 and k ≤ r − 1. Let f be a γkS(CT (n))-function. If f(x) = 1 for each x ∈ V (CT (n)), then
w(f) = n ≥ 2k + 1. We may assume, without loss of generality, that f(u0) = −1. Consider the sets N−[u0] and N−[ur ].
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Since f is an SkDF on CT (n), we have f(N−[u0]) ≥ k , f(N−[ur ]) ≥ k if r ≡ k + 1 (mod 2) and f(N−[u0]) ≥ k + 1,
f(N−[ur ]) ≥ k + 1 when r ≡ k (mod 2). Therefore

ω(f) = f(V (CT (n))) = f(N−[u0]) + f(N−[ur ])− f(u0) ≥
{

2k + 1 if r ≡ k + 1 (mod 2),
2k + 3 if r ≡ k (mod 2).

This implies that

γkS(CT (n)) ≥
{

2k + 1 if r ≡ k + 1 (mod 2),
2k + 3 if r ≡ k (mod 2).

Suppose now that s =
⌊ r−k−1

2
⌋
, V− = {u1, . . . , us, ur+1, . . . , ur+s} and V+ = V (CT (n)) − V−. Define f : V (CT (n)) →

{−1, 1} by f(u0) = −1, f(v) = 1 if v ∈ V+ and f(v) = −1 when v ∈ V−. For any vertex v ∈ V (CT (n)) we have
|N−[v ]| = r+ 1 and |N−[v ]∩V−| ≤ s+ 1. Therefore f(N−[v ]) = r − 2s − 1 ≥ k and so f is an SkDF on CT (n). Now we
have

γkS(CT (n)) ≤ ω(f) =
{

2k + 1 if r ≡ k + 1 (mod 2),
2k + 3 if r ≡ k (mod 2).

This completes the proof.

2. Lower bounds on signed k-domination numbers of digraphs

In this section we present some sharp lower bounds for γkS(D) in terms of the order, the maximum and minimum outdegree
and indegree, and the chromatic number of D. Recall that the complement of a graph G is denoted as G.

Theorem 2.1.
Let k ≥ 1 be an integer, and let D be a digraph of order n ≥ k + 1 with δ−(D) ≥ k − 1. Then

γkS(D) ≥ 2 (k + 1)− n,

with equality if and only if D is H ∨ Kn−k−1, where H is a digraph of order k + 1 with δ−(H) ≥ k − 1 such that u → v
for each u ∈ V (H) and each v ∈ V (Kn−k−1). Also, if d−H (w) = k − i with i = 0, 1 for a vertex w ∈ V (H), then there are
at most i arcs from V (Kn−k−1) to w.

Proof. Let f be an SkDF of D. If f assigns 1 to each vertex, then the statement is true, since n ≥ k + 1. Now
assume that there exists a vertex v ∈ V with f(v) = −1. Then f assigns 1 to at least k + 1 vertices in N−D (v) and so
|M| ≤ n − k − 1. Thus

γkS(D) = |P| − |M| ≥ k + 1− (n − k − 1) = 2 (k + 1)− n,

as desired.

Let H be a digraph of order k +1 with δ−(H) ≥ k − 1 such that u → v for each u ∈ V (H) and each v ∈ V (Kn−k−1). If D
is H ∨Kn−k−1, and if for every vertex w ∈ V (H) with d−H (w) = k − i for i = 0, 1, there are at most i arcs from V (Kn−k−1)
to w, then we define f : V (D)→ {−1, 1} by f(v) = 1 if v ∈ V (H) and f(v) = −1 if v ∈ V (Kn−k−1). It is straightforward
to verify that f is an SkDF of D with w(f) = 2 (k + 1)− n and hence γkS(D) = 2(k + 1)− n.

Now let D be a digraph such that γkS(D) = 2 (k+1)−n. Let f be an SkDF of D. Then |P| = k+1 and |M| = n−k −1.
Define H by D[P]. Since f(N−D [x]) ≥ k for every vertex x, we deduce that δ−(H) ≥ k − 1, u → v for each u ∈ V (H) and
each v ∈ M and M is an independent set. In addition, we observe that for every vertex w ∈ V (H) with d−H (w) = k , an
arbitrary arc from M to w is admissible. This completes the proof.

For oriented graphs we now present a sharper lower bound on the signed k-domination number when k ≥ 2.
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Theorem 2.2.
Let k ≥ 2 be an integer, and let D be an oriented graph of order n with δ−(D) ≥ k − 1. Then

γkS(D) ≥ 2 (2k − 1)− n,

with equality if and only if D consists of an arbitrary (k − 1)-regular tournament T2k−1 and a set W of n − (2k − 1)
further vertices, such that each w ∈ W has at least k + 1 in-neighbors in T2k−1 and there is no arc from W to T2k−1.
Also, if a vertex w ∈ W has k + 1 ≤ t ≤ 2k − 1 in-neighbors in T2k−1, then w has at most t − k − 1 in-neighbors in W .

Proof. Let f be an SkDF of D. Each vertex v ∈ P has at least k − 1 in-neighbors in P. This implies that

|P|(|P| − 1)
2 ≥ |A(D[P])| ≥ (k − 1)|P|,

and thus |P| ≥ 2k − 1. Therefore |M| ≤ n − 2k + 1, and we obtain the desired bound as follows,

γkS(D) = |P| − |M| ≥ 2k − 1− (n − 2k + 1) = 2 (2k − 1)− n.

Assume that D consists of an arbitrary (k − 1)-regular tournament T2k−1 and a set W of n − (2k − 1) further vertices,
such that each w ∈ W has at least k + 1 in-neighbors in T2k−1, and there is no arc from W to T2k−1. Also, assume that
if a vertex w ∈ W has k + 1 ≤ t ≤ 2k − 1 in-neighbors in T2k−1, then w has at most t − k − 1 in-neighbors in W . We
define f : V (D) → {−1, 1} by f(v) = 1 if v ∈ V (T2k−1) and f(v) = −1 if v ∈ W . It is easy to see that f is an SkDF of
D with w(f) = 2(2k − 1)− n, and so γkS(D) = 2(2k − 1)− n.

Now let D be a digraph such that γkS(D) = 2(2k −1)−n. If f is an SkDF of D, then |P| = 2k −1 and |M| = n−2k+1.
Define T by D[P]. Since f(N−D [x]) ≥ k for every vertex x, we deduce that δ−(T ) ≥ k − 1, and therefore it follows that

(k − 1)(2k − 1) ≤
∑

v∈V (T )

δ−(T ) ≤
∑

v∈V (T )

d−T (v) = |A(T )| ≤ n(T ) (n(T )− 1)
2 = (k − 1)(2k − 1).

Hence we have equality in this inequality chain, and thus T is a tournament such that d−T (x) = k − 1 for each x ∈ V (T ).
Because d+

T (x) + d−T (x) = n(T ) − 1 = 2k − 2, for each x ∈ V (T ), we conclude that T is a (k − 1)-regular tournament.
Now it follows that there is no arc from M to P, every vertex in M has at least k + 1 in-neighbors in P, and if a vertex
w ∈ M has k + 1 ≤ t ≤ 2k − 1 in-neighbors in P, then w has at most t − k − 1 in-neighbors in M.

Theorem 2.3.
Let k ≥ 1 be an integer, and let D be a digraph of order n with δ−(D) ≥ k − 1. Then

γkS(D) ≥ n
2
⌈
δ−(D)+k+1

2

⌉
− 1− ∆+(D)

∆+(D) + 1 .

Proof. Let f be a γkS(D)-function, and let s be the number of arcs from the set P to the set M. The condition
f(N−[x]) ≥ k implies that |E(P, x)| ≥ |E(M, x)|+ k − 1 for x ∈ P, and |E(P, x)| ≥ |E(M, x)|+ k + 1 for x ∈ M. Thus we
obtain

δ−(D) ≤ d−(x) = |E(P, x)|+ |E(M, x)| ≤ 2 |E(P, x)| − k − 1,

and so |E(P, x)| ≥
⌈
δ−(D)+k+1

2

⌉
for each vertex x ∈ M. Hence we deduce that

s =
∑

x∈M

|E(P, x)| ≥
∑

x∈M

⌈
δ−(D) + k + 1

2

⌉
= |M|

⌈
δ−(D) + k + 1

2

⌉
. (1)
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Since |E(P, x)| ≥
⌈
δ−(D)+k−1

2

⌉
for x ∈ P, it follows that |E(D[P])| =

∑
y∈P |E(P, y)| ≥ |P|

⌈
δ−(D)+k−1

2

⌉
, and so we

conclude that

s =
∑

y∈P

d+(y)− |E(D[P])| ≤
∑

y∈P

d+(y)− |P|
⌈
δ−(D) + k − 1

2

⌉
≤ |P|∆+(D)− |P|

⌈
δ−(D) + k − 1

2

⌉
. (2)

Inequalities (1) and (2) imply that

|M| ≤
|P|∆+(D)− |P|

⌈
δ−(D)+k−1

2

⌉

⌈
δ−(D)+k+1

2

⌉ .

Since γkS(D) = |P| − |M| and n = |P|+ |M|, the last inequality leads to

γkS(D) ≥ |P| −
|P|∆+(D)− |P|

⌈
δ−(D)+k−1

2

⌉

⌈
δ−(D)+k+1

2

⌉ = n+ γkS(D)
2 ·

2
⌈
δ−(D)+k+1

2

⌉
− 1− ∆+(D)

⌈
δ−(D)+k+1

2

⌉ ,

and this yields the desired result.

To see the sharpness of the last result, let D = K ∗n . If k = n or k = n − 1, then Theorem 2.3 leads to γkS(D) ≥ n, and
thus γkS(D) = n.

If D(G) is the associate digraph of a graph G, then N−D(G)(v) = NG(v) for each v ∈ V (G) = V (D(G)). Thus the following
useful observation is valid.

Observation 2.4.
If D(G) is the associate digraph of a graph G, then γkS(D(G)) = γkS(G).

There are many interesting applications of Observation 2.4, such as the following two results.

Corollary 2.5.
Let k ≥ 1 be an integer, and let G be a graph of order n with δ(G) ≥ k − 1. Then

γkS(G) ≥ n
2
⌈
δ(G)+k+1

2

⌉
− 1− ∆(G)

∆(G) + 1 .

Proof. Since δ(G) = δ−(D(G)), ∆(G) = ∆+(D(G)) and n = n(D(G)), it follows from Theorem 2.3 and Observation 2.4
that

γkS(G) = γkS(D(G)) ≥
2
⌈
δ−(D(G))+k+1

2

⌉
− 1− ∆+(D(G))

∆+(D(G)) + 1 n =
2
⌈
δ(G)+k+1

2

⌉
− 1− ∆(G)

∆(G) + 1 n.

Corollary 2.6 ([5]).
Let k ≥ 1 be an integer, and let G be an r-regular graph of order n with r ≥ k − 1. Then γkS(G) ≥ kn

r+1 if k + r + 1 is
even, and γkS(G) ≥ (k+1)n

r+1 if k + r + 1 is odd.

The special case k = 1 in Corollary 2.6 can be found in [1] and [2]. Counting the arcs from M to P, we next prove an
analogue to Theorem 2.3.
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Theorem 2.7.
Let k ≥ 1 be an integer, and let D be a digraph of order n with δ−(D) ≥ k − 1. Then

γkS(D) ≥ n
δ+(D) + 1− 2

⌊
∆−(D)−k+1

2

⌋

δ+(D) + 1 .

Proof. Let f be a γkS(D)-function, and let s be the number of arcs from M to P. If x ∈ P, then

∆−(D) ≥ d−(x) = |E(P, x)|+ |E(M, x)| ≥ 2 |E(M, x)|+ k − 1,

and thus |E(M, x)| ≤
⌊

∆−(D)−k+1
2

⌋
for each x ∈ P. Hence we deduce that

s =
∑

x∈P

|E(M, x)| ≤ |P|
⌊

∆−(D)− k + 1
2

⌋
. (3)

If x ∈ M, then
∆−(D) ≥ d−(x) = |E(P, x)|+ |E(M, x)| ≥ 2 |E(M, x)|+ k + 1,

and thus |E(M, x)| ≤
⌊

∆−(D)−k−1
2

⌋
for each x ∈ M. It follows that

s =
∑

y∈M

d+(y)− |E(D[M])| ≥ |M| δ+(D)− |M|
⌊

∆−(D)− k − 1
2

⌋
. (4)

Inequalities (3) and (4) imply that

|P| ≥
|M| δ+(D)− |M|

⌊
∆−(D)−k−1

2

⌋

⌊
∆−(D)−k+1

2

⌋ .

Since γkS(D) = |P| − |M| and n = |P|+ |M|, the last inequality leads to

γkS(D) ≥
|M|δ+(D)− |M|

⌊
∆−(D)−k−1

2

⌋

⌊
∆−(D)−k+1

2

⌋ − |M| = n − γkS(D)
2 ·

δ+(D)− 2
⌊

∆−(D)−k+1
2

⌋
+ 1

⌊
∆−(D)−k+1

2

⌋ ,

and this yields the desired result immediately.

Using Observation 2.4 and Theorem 2.7, we obtain an analogue to Corollary 2.5, and this also leads to Corollary 2.6.

Theorem 2.8.
Let k ≥ 1 be an integer, and let D be a digraph of order n with δ−(D) ≥ k − 1. Then

γkS(D) ≥ δ+(D) + 2k − ∆+(D)
δ+(D) + ∆+(D) + 2 n.

Proof. If f is a γkS(D)-function, then

nk =
∑

x∈V

k ≤
∑

x∈V

f(N−[x]) =
∑

x∈V

(d+(x) + 1)f(x) =
∑

x∈P

(d+(x) + 1)−
∑

x∈M

(d+(x) + 1)

≤ |P|(∆+(D) + 1)− |M|(δ+(D) + 1) = |P|
(
∆+(D) + δ+(D) + 2

)
− n (δ+(D) + 1).
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This implies that

|P| ≥ n (δ+(D) + k + 1)
δ+(D) + ∆+(D) + 2 ,

and hence we obtain the desired bound as follows,

γkS(D) = |P| − |M| = 2 |P| − n ≥ 2n (δ+(D) + k + 1)
δ+(D) + ∆+(D) + 2 − n = δ+(D) + 2k − ∆+(D)

δ+(D) + ∆+(D) + 2 n.

Using Observation 2.4, we obtain the following analogue for graphs.

Corollary 2.9.
If k ≥ 1 is an integer, and G is a graph of order n with δ(G) ≥ k − 1, then

γkS(G) ≥ δ(G) + 2k − ∆(G)
δ(G) + ∆(G) + 2 n.

We note that Corollary 2.9 immediately implies a 1999 result by Zhang, Xu, Li and Liu [8] for the case k = 1.

Theorem 2.10.
Let k ≥ 1 be an integer, and let D be a digraph of order n with δ−(D) ≥ k − 1. Then

γkS(D) ≥ kn+ |A(D)| − n∆+(D)
∆+(D) + 1 .

Proof. If f is a γkS(D)-function, then

nk ≤
∑

x∈V

f(N−[x]) =
∑

x∈V

(d+(x) + 1)f(x) =
∑

x∈P

(d+(x) + 1)−
∑

x∈M

(d+(x) + 1)

= 2
∑

x∈P

(d+(x) + 1)−
∑

x∈V

(d+(x) + 1) ≤ 2|P|(∆+(D) + 1)− |A(D)| − n.

This implies that

|P| ≥ (k + 1)n+ |A(D)|
2∆+(D) + 2 ,

and hence we obtain the desired bound as follows,

γkS(D) = |P| − |M| = 2|P| − n ≥ (k + 1)n+ |A(D)|
∆+(D) + 1 − n = kn+ |A(D)| − n∆+(D)

∆+(D) + 1 .

Theorem 2.11.
Let r ≥ k ≥ 1 be integers, and let D be a digraph of order n ≥ 2 such that δ−(D) ≥ k − 1 and δ+(D) ≥ r. Then

γkS(D) ≥ 2
(
χ(G) + k + r − ∆(G)

)
− n,

where G is the underlying graph of D.
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Proof. By Theorem B, we may assume that k ≥ 2. If ∆−(D) ≤ k , then d+(x) = d−(x) = k for each x ∈ V (D), and by
Observation 1.4, γkS(D) = n. The result follows. If ∆−(D) ≥ k + 1, then ∆(G) ≥ 2k + 1.

Let α = ∆(G)−r−k−1
2 . We claim that r ≤ ∆(G)−k − 1. Suppose to the contrary that r ≥ ∆(G)−k . Since d+(x) +d−(x) ≤

∆(G), by the assumption we have d−(x) ≤ k for each x ∈ V (D). Thus

n (∆(G)− k) ≤
∑

x∈V (D)

d+(x) =
∑

x∈V (D)

d−(x) ≤ nk,

which implies that ∆(G) ≤ 2k . This is a contradiction, and therefore α ≥ 0. For each x ∈ M, |E(P, x)| ≥ |E(M, x)|+k+1,
and so

∆(G) ≥ deg (x) = |E(P, x)|+ |E(M, x)|+ d+(x) ≥ r + 2|E(M, x)|+ k + 1,

which implies |E(M, x)| ≤ α . Let H = D[M] be the subdigraph induced by M and let H ′ = G[M] be the underlying
graph of H.

Suppose H1 is an induced subgraph of H. Then d−H1
(x) ≤ |E(M, x)| ≤ α for each x ∈ V (H1), and hence

∑
x∈V (H1) d+

H1
(x) =∑

x∈V (H1) d−H1
(x) ≤ α |V (H1)|. Therefore there exists a vertex x ∈ V (H1) such that d+

H1
(x) ≤ α . This implies that

δ(H ′1) ≤ 2α , where H ′1 is the underlying graph of H1. By Theorem A,

χ(H ′) ≤ 1 + max
{
δ(H ′′) | H ′′ is a subgraph of H ′

}

= 1 + max
{
δ(H ′1) | H ′1 is an induced subgraph of H ′

}
≤ 1 + 2α.

Since 2|P| − n = γkS(D), it follows that

χ(G) ≤ χ(G[P]) + χ(G[M]) ≤ |P|+ 1 + 2α = 1 + 2α + n+ γkS(D)
2 .

Thus
γkS(D) ≥ 2

(
χ(G) + k + r − ∆(G)

)
− n,

as required.

Theorem 2.12.
Let D be a digraph of order n and size m, and let G be the underlying graph of D. Then γkS(D) ≥ nk −m. Furthermore,
the bound is sharp.

Proof. Let f be a γkS(D)-function and t be the number of arcs from the set P to the set M. Then

t =
∑

x∈M

|E(P, x)| ≥
∑

x∈M

(k + 1) = |M|(k + 1) = (n − |P|)(k + 1). (5)

On the other hand, m ≥ t+ |E(P,P)|. Since |E(P,P)| ≥ |P|(k − 1), we have m ≥ (n− |P|)(k + 1) + |P|(k − 1) and thus
|P| ≥ n(k+1)−m

2 . Since γkS(D) = 2|P| − n, the result follows.

To prove the sharpness, note that if k = n, the bound is sharp for K ∗n . Thus we may assume k ≤ n − 1. Suppose that
C is a directed Hamiltonian cycle in K ∗k+1 and consider the digraph D =

(
K ∗k+1 − E(C )

)
∨ Kn−k−1 where the edges

are oriented from V
(
K ∗k+1 − E(C )

)
to V (Kn−k−1). Define f : V (D) → {−1, 1} by f(v) = 1 if v ∈ V

(
K ∗k+1 − E(C )

)
and

f(v) = −1 if v ∈ V (Kn−k−1). Obviously, f is an SkDF of D and w(f) = nk − m where m is the size of D. Hence,
γkS(D) = nk − m. This completes the proof.

Theorem 2.13.
Let D be a digraph of order n with outdegree sequence d+

1 ≥ d+
2 ≥ · · · ≥ d+

n and let s be the smallest positive integer
for which

∑s
i=1 d+

i −
∑n

i=s+1 d+
i ≥ (k + 1)n − 2s. Then γkS(D) ≥ 2s − n. Furthermore, this bound is sharp.
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Proof. Let f be a γkS(D)-function and p = |P|. We have

kn ≤
∑

x∈V

f(N−D [x]) =
∑

x∈V

(d+(x) + 1)f(x) =
∑

x∈P

(d+(x) + 1)−
∑

x∈M

(d+(x) + 1)

≤ |P| − |M|+
(
∑

x∈P

d+(x)−
∑

x∈M

d+(x)
)
≤ 2p − n+




p∑

i=1

d+
i −

n∑

i=p+1

d+
i



 .

Thus (k + 1)n − 2p ≤
∑p

i=1 d+
i −

∑n
i=p+1 d+

i . By the assumption on s, we must have p ≥ s. This implies that
γkS(D) = 2p − n ≥ 2s − n.

In order to show that the bound is sharp, suppose that C is a directed Hamiltonian cycle in K ∗k+1 and consider the
digraph D =

(
K ∗k+1 − E(C )

)
∨ Kn−k−1 where the edges are oriented from V

(
K ∗k+1 − E(C )

)
to V (Kn−k−1). By Theorem

2.12, γks(D) = 2(k + 1)− n. Since the outdegree sequence of D is

k+1︷ ︸︸ ︷
n − 2, . . . , n − 2,

n−k−1︷ ︸︸ ︷
0 . . . , 0

and (n−2)(k+1) = n (k+1)−2 (k+1), it follows that k+1 is the smallest positive integer such that
∑s

i=1 d+
i −
∑n

i=s+1 d+
i ≥

n (k + 1)− 2 (k + 1), and so γkS(D) ≥ 2 (k + 1)− n. This completes the proof.

The special case k = 1 in Theorems 2.12 and 2.13 was recently proved by Karami, Khodkar and Sheikholeslami in [3].
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