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Introduction

Higher order modular forms show up in various contexts. For instance, in percolation theory [16] or in the theory ofEisenstein-series twisted by modular symbols [2, 12, 13]. Finally, spaces of higher order forms are natural receptaclesof converse theorems [10, 14].
L-functions of second order forms have been studied in [7], Poincaré series attached to higher order forms have beeninvestigated in [15], dimensions of spaces of second order forms have been determined in [8, 9]. Higher order cohomologyhas been introduced and an Eichler–Shimura type theorem has been proven in [3]. In [5] a program has been startedwhich aims at an understanding of the theory of higher order forms from a representation-theoretical point of view.The paper [4] contains a structure theorem showing that spaces of higher order automorphic forms are in a natural waysubspaces of tensor products of automorphic representation spaces. In this paper we restrict ourselves to the simplecase of a compact quotient in which case we are able to
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Higher order invariants in the case of compact quotients

• remove the “subspace” part from the assertion, i.e., get a more precise statement on the structure of higher orderforms, and
• extend the theory to L2-invariants instead of smooth invariants only.

Also, this presentation has the advantage of being much simpler than in the general setting. For instance, in the caseof compact quotient, there is no need to factor out cuspidal ideals and so all formulae look simpler.
1. Higher order invariants

Let R be a commutative ring with unit. In the main applications, R will be the field of complex numbers. Let Γ be a groupand let I denote the augmentation ideal in the group algebra A = R [Γ]. For an A-module V we define the R-module
H0
q(Γ, V )

of invariants of order q ≥ 1 to be the set of all v ∈ V with Iqv = 0. Note that for q = 1 one gets the usual invariants
H01(Γ, V ) = H0(Γ, V ) = V Γ.

There is a natural identification H0
q(Γ, V ) ∼= HomA(A/Iq, V ).

The sets H0
q−1(Γ, V ) ⊂ H0

q(Γ, V ) form a filtration on V which is not necessarily exhaustive. Let
H0
q(Γ, V ) def= H0

q(Γ, V )/H0
q−1(Γ, V )

be the q-th graded piece, where we allow q = 1, 2, . . . by formally setting H00(Γ, V ) = 0.For an abelian group G, let Hom (Γ, G) denote the set of all group homomorphisms Γ→ G.
Lemma 1.1.
Suppose that R is a field. If Γ is finitely generated as a group or if W is finite-dimensional, then

Hom (Γ,W ) ∼= Hom (Γ, R)⊗W,

where the tensor product is over R.

Proof. This is easy to see.
Definition 1.2.We introduce the order-lowering-homomorphism

Λ = Λq : H0
q(Γ, V ) −→ Hom(Γ,H0

q−1(Γ, V ))
given by Λ(v)(γ) = (γ − 1)v.To see that ψ(v) is indeed a group homomorphism, note that in the group algebra C[Γ] one has (τγ−1) ≡ (τ−1)+(γ−1)mod I2.
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A. Deitmar

Proposition 1.3.
(a) The order-lowering operator Λ is injective.

(b) If R is a field and Hom (Γ, R) = H1(Γ, R) = 0, then there are no non-trivial higher order invariants, i.e., one has

H0
q(Γ, V ) = V Γ

for all q ≥ 1.

(c) If R is a field and Γ is finitely generated or dimV < ∞, then the order-lowering operator induces an injectiveΓ-equivariant linear map Λq : H0
q(Γ, V ) ↪→ Hom (Γ, R)⊗(q−1) ⊗ V Γ.

Proof. Part (a) is clear. Part (b) becomes clear by choosing a basis of H0
q−1(Γ, V ). The last assertion follows fromLemma 1.1.

Lemma 1.4.
Let V be an R [Γ]-module which is torsion-free as Z-module. Let Σ ⊂ Γ be a subgroup of finite index. Then the natural
restriction map res : H0

q(Γ, V )0 → H0
q(Σ, V )

is injective.

Note that the torsion-condition is automatic if R contains the field Q.
Proof. By induction on q.
2. Higher order cohomology

For an R [Γ]-module V we define the higher order cohomology to be
Hp
q(Γ, V ) = ExtpA (A/Iq, V ).

For q = 1 this is ordinary group cohomology.For an R-module M and a set S we write MS for the R-module of all maps from S to M. Then M∅ is the trivial module 0.Up to isomorphy, the module MS depends only on the cardinality of S. It therefore makes sense to define Mc for anycardinal number c in this way. Note that Iq/Iq+1 is a free R-module. Define
NΓ(q) def= dimR Iq/Iq+1.

Then NΓ(q) is a possibly infinite cardinal number.
Lemma 2.1.
(a) For every q ≥ 1 there is a natural exact sequence

0→ H0
q(Γ, V )→ H0

q+1(Γ, V )→ H0(Γ, V )NΓ(q) → H1
q(Γ, V )→ H1

q+1(Γ, V )
→ H1(Γ, V )NΓ(q) → . . . → Hp

q(Γ, V )→ Hp
q+1(Γ, V )→ Hp(Γ, V )NΓ(q) → . . .
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Higher order invariants in the case of compact quotients

(b) Suppose that for a given p ≥ 0 one has Hp(Γ, V ) = 0. Then Hp
q(Γ, V ) = 0 for every q ≥ 1. In particular, if V is

acyclic as Γ-module, then Hp
q(Γ, V ) = 0 for all p ≥ 1, q ≥ 1.

Note that Hp(Γ, V )NΓ(q) here comes up as ExtpA (Iq/Iq+1, V ), which is important for the functoriality in the group Γ of theabove sequence.
Proof. Consider the exact sequence

0 → Iq/Iq+1 → A/Iq+1 → A/Iq → 0.
As an A-module, Iq/Iq+1 is isomorphic to a direct sum ⊕α Rα of copies of R = A/I. So we conclude that for every p ≥ 0,

ExtpA (Iq/Iq+1, V ) ∼= ∏
α

ExtpA(R, V ) ∼= Hp(Γ, V )NΓ,Σ(q).

The long exact Ext-sequence induced by the above short sequence is
0→ HomA

(
A/Iq, V

)
→ HomA

(
A/Iq+1, V )→ HomA

(
Iq/Iq+1, V )→ Ext1A (A/Iq, V )→ Ext1A (A/Iq+1, V )

→ Ext1A (Iq/Iq+1, V )→ Ext2A (A/Iq, V )→ Ext2A (A/Iq+1, V )→ Ext2A (Iq/Iq+1, V )→ . . .

This is the claim (a). For (b) we proceed by induction on q. For q = 1 the claim follows from Hp1 (Γ, V ) = Hp(Γ, V ).Inductively, assume the claim proven for q − 1 and Hp(Γ, V ) = 0. As part of the above exact sequence, we have theexactness of
Hp
q−1(Γ, V ) → Hp

q(Γ, V ) → Hp(Γ, V )NΓ(q).By assumption, we have Hp(Γ, V )NΓ,Σ(q) = 0 and by induction hypothesis the module Hp
q−1(Γ, V ) vanishes. This implies

Hp
q(Γ, V ) = 0 as well.

Lemma 2.2.
For every q ≥ 1 there is a natural isomorphism

HomR
(
Iq/Iq+1, R) ∼= H1

q(Γ, R).
Proof. The exact sequence 0 → Iq → A → A/Iq → 0induces an exact sequence

0 → HomA
(
A/Iq, R

) α−→ HomA(A, R) β−→ HomA(Iq, R) γ−→ Ext1A (A/Iq, R) → 0.
Now α is an isomorphism, therefore β is zero and γ is an isomorphism again. We get an isomorphism

HomR
(
Iq/Iq+1, R) ∼= HomA(Iq, R) ∼= H1

q(Γ, R).
Proposition 2.3.
Suppose that R is a field. Let Γ be finitely generated and let V be an R [Γ]-module with

H1(Γ, V ) = 0.
Then for every q ≥ 1 there is a natural isomorphism

H0
q+1(Γ, V ) ∼=−→ H1

q(Γ, R)⊗ V Γ.
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Proof. By Proposition 2.1 we get an exact sequence
0 → H0

q(Γ, V ) → H0
q+1(Γ, V ) → HomR

(
Iq/Iq+1,H0(Γ, V )) → 0.

Since Γ is finitely generated, the free R-module Iq/Iq+1 is finite-dimensional, hence we get
HomR

(
Iq/Iq+1, H0(Γ, V )) ∼= HomR

(
Iq/Iq+1, R)⊗H0(Γ, V ).

The claim now follows from Lemma 2.2.
Lemma 2.4.
For q ≥ 1 the natural map H1

q(Γ, R) → H1
q+1(Γ, R)

is the zero map.

Proof. In Lemma 2.1 we put V = R and get the exact sequence
HomR

(
Iq/Iq+1, R) α−→ H1

q(Γ, R) → H1
q+1(Γ, R).

We claim that α is an isomorphism. Note that α is the restriction of the connection morphism attached to the exactsequence 0 → Iq/Iq+1 → A/Iq+1 → A/Iq → 0,
which is related to the sequence 0 → Iq →,A→ A/Iq → 0.
The connection morphism α̃ of the latter was shown in Lemma 2.2 to be an isomorphism. Taking residue classes modulo
Iq+1 maps the first exact sequence to the second. This results in a map of the corresponding long exact Ext-sequences,a part of which gives the commutative diagram

HomA
(
Iq/Iq+1, R) H1

q(Γ, R)

HomA(Iq, R) H1
q(Γ, R).

//α

��

∼=
��

∼=
//

∼=

It follows that α is an isomorphism, indeed.
3. Hecke pairs and smooth modules

A Hecke pair is a pair (G,Γ) of a group G and a subgroup Γ such that for every g ∈ G the set ΓgΓ/Γ is finite. We alsosay that Γ is a Hecke subgroup of G.Two subgroups Γ,Λ of a group H are called commensurable, written Γ ∼ Λ, if the intersection Γ ∩ Λ has finite index inboth. Commensurability is an equivalence relation which is preserved by automorphisms of H. The commensurator of agroup Γ ⊂ H is comm (Γ) def= {
h ∈ H : Γ and hΓh−1 are commensurable}.
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Higher order invariants in the case of compact quotients

Lemma 3.1.
The commensurator G = comm (Γ) is a subgroup of H. It is the largest subgroup such that (G,Γ) is a Hecke pair. More
precisely, comm (Γ) = {

h ∈ H : |ΓhΓ/Γ|, |Γ\ΓhΓ| < ∞}.
Proof. Let G = comm (Γ) and g ∈ G. Then Γ ∼ gΓg−1. By conjugating we get g−1Γg ∼ Γ, hence g−1 ∈ G. Nextlet h ∈ G as well. Then Γ ∼ hΓh−1 and hence gΓg−1 ∼ ghΓ(gh)−1 so that γ ∼ gΓg−1 implies Γ ∼ ghΓ(gh)−1, whichmeans that gh ∈ G, so G is indeed a subgroup.To see the identity claimed in the lemma, one simply observes that for every h ∈ H the natural map Γ/Γ∩hΓh−1 → ΓhΓ/Γ,mapping the class of γ to the class of γh is a bijection.
Let G be a group. By a G-module we shall henceforth mean an R [G]-module. If G is a totally disconnected topologicalgroup, an element v of a G-module V is called smooth if it is stabilized by some open subgroup of the topologicalgroup G. The set V∞ of all smooth elements is a submodule and the module V is called smooth if V = V∞.Drop the condition that G is a topological group and let (G,Γ) be a Hecke pair. A congruence subgroup of Γ is anysubgroup which contains a group of the form

Γ ∩ g1Γg−11 ∩ · · · ∩ gnΓg−1
n

for some g1, . . . , gn ∈ G. As (G,Γ) is a Hecke pair, every congruence subgroup has finite index in Γ. Note that thisdefinition of a congruence subgroup coincides with the one given in [5]. For every congruence subgroup Σ equip the set
G/Σ with the discrete topology and consider the topological space

Ĝ
def= lim←Σ G/Σ,

where the limit is taken over all congruence subgroups Σ.
Lemma 3.2.
(a) The intersection of all congruence subgroups N = ⋂Σ Σ is a normal subgroup of G.

(b) The natural map p : G → Ĝ factors through the injection G/N ↪→ Ĝ and has dense image.

(c) The group multiplication on G/N extends by continuity to Ĝ and makes Ĝ a totally disconnected locally compact
group.

We call Ĝ the congruence completion of G. Although the notation does not reflect this, the completion Ĝ depends on thechoice of the Hecke subgroup Γ. A Hecke subgroup Γ is called effective, if the normal subgroup N above is trivial.
Proof. (a) Let n ∈ N and let g ∈ G. For a given congruence subgroup Σ we have that n ∈ Σ ∩ g−1Σg, and so
gng−1 ∈ Σ. As Σ varies, we find gng−1 ∈ N.(b) Let g, g′ ∈ G with p(g) = p(g′). This means that gΣ = g′Σ for every congruence subgroup and so gN = g′N. Forgiven (gΣ)Σ ∈ Ĝ the sets UΣ = {h ∈ Ĝ : hΣΣ = gΣΣ} form a neighborhood base. Clearly the element gΣ ∈ G is mappedinto UΣ, so the image of p is dense.(c) Let ḡ = (gΣ)Σ ∈ Ĝ. Then the net (p (gΣ))Σ converges to ḡ. For h̄ = (hΣ) ∈ Ĝ it is easy to see that the net (p (gΣhΣ))Σconverges in Ḡ. We call the limit ḡh̄. This multiplication has the desired properties.
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A. Deitmar

The initial topology defined by p on G makes G a topological group with the congruence groups forming a unit neigh-borhood base. Clearly, every smooth Ḡ-module is a smooth G-module by restriction. But also the converse is true:every smooth G-module extends uniquely to a smooth Ḡ-module and these two operations of restriction and extensionare inverse to each other. Let Ĥp
q(V ) def= lim→Σ Hp

q(Σ, V ),
where the limit is taken over all congruence subgroups of Γ. For p = 0 we also define

Ĥ0
q(V ) = lim→Σ H0

q(Σ, V ).
Note that Ĥ00(V ) = V∞. For g ∈ G, the map induced by g:

Hp
q(Σ, V ) → Hp

q
(
gΣg−1, V ) res−→ Hp

q
(Σ ∩ gΣg−1, V )

defines an action of G on Ĥp
q(V ).Assume from now on that Γ is finitely generated and R is a field. Then every finite-index subgroup Σ ⊂ Γ is finitelygenerated as well, so Lemma 1.1 applies to all modules V .Let R be a field and consider the order-lowering map

H0
q(Σ, V ) ↪→ Hom (Σ, R)⊗H0

q−1(Σ, V ).
By iteration we get an injection H0

q(Σ, V ) ↪→ Hom (Σ, R)⊗(q−1) ⊗ V Σ.Taking limits we get an injection
Ĥ0
q(V ) ↪→ (lim→Σ Hom (Σ, R))⊗(q−1)

⊗ V∞.

Write Ĥom(Γ, R) = lim→Σ Hom (Σ, R).
We have shown
Proposition 3.3.
If Γ is finitely generated and R is a field, then there is a natural injection of smooth modules

Ĥ0
q(V ) ↪→ Ĥom(Γ, R)⊗(q−1) ⊗ V∞.

There are examples when this map is not surjective.
Proposition 3.4.
Let (G,Γ) be a Hecke pair. Assume Γ to be finitely generated and let V be an R [Γ]-module such that

H1(Σ, V ) = 0
for every congruence subgroup Σ of Γ. Then for every q ≥ 1 there is an isomorphism of G-modules

Ĥ0
q(V ) ∼=−→ Ĥ1

q−1(R)⊗ V∞.
Proof. This is a consequence of Proposition 2.3.
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4. Higher order L2-spaces

Let G be a locally compact group and Γ a countable discrete subgroup. We consider the action of Γ on G by lefttranslations.
Lemma 4.1.
The group Γ is closed in G. It acts strongly discontinuously in the sense that for every compact subset C ⊂ G the set

{γ ∈ Γ : C ∩ γC 6= ∅}
is finite.

Proof. It is known that discrete subgroups are closed [6]. Further, discreteness of Γ implies that Γ meets everycompact set in only finitely many points. With C the set CC−1 is also compact, which gives the claim.
A fundamental set is a set F ⊂ G of representatives for the quotient Γ\G which is measurable. A fundamental set Fis called locally finite if there exists an open neighborhood U of the closure F such that U meets only finitely manytranslates of F , i.e., the set

{γ ∈ Γ : γF ∩ U 6= ∅}
is finite.
Lemma 4.2.
Any measurable set M ⊂ G which contains a set of representatives for Γ\G, contains a fundamental set.

Proof. According to a theorem of Feldman and Greenleaf [11] there exists a fundamental set F̃ ⊂ G. We nowenumerate the elements of Γ, so Γ = {1 = γ1, γ2, γ3, . . . }.
We set F1 = M ∩ F̃ and iteratively we define

Fj+1 = Fj ∪
[(
M ∩ γj+1F̃)r ΓMj

]
.

Then F = ⋃∞j=1 Fj is a fundamental set contained in M.
Two fundamental sets F1, F2 are called compatible, if there is a finite subset E ⊂ Γ such that

F1 ⊂ EF2 and F2 ⊂ EF1.
Let M be the space of all measurable functions modulo nullfunctions on G and let Mq be the subspace of all f ∈ F suchthat Iqf = 0, where I is the augmentation ideal in C[Γ].
Proposition 4.3.
Fix a fundamental set F ⊂ G. Assume that Γ is finitely generated and let S be a finite symmetric set of generators ofΓ which is supposed to contain the unit element. Then, any f ∈ Mq is uniquely determined by its restriction to

Sq−1F = ⋃
s1,...,sq−1∈S

s1 · · · sq−1F.
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Here we interpret S0F as F itself. The space
Mq ∩ L2(Sq−1F )

neither depends on the choice of S nor on the choice of F in a given compatibility class. We denote this space by L2
q(F )

or, if there is a given choice of F, by L2
q(Γ\X ).

Also, the topology on L2
q(F ), given by the L2-structure, is independent of the choices in the same way as the space itself.

Proof. We have to show that any f ∈ Mq which vanishes on Sq−1F , is zero. We use induction on q. The case q = 1is clear. Let q ≥ 2 and set M̄q = Mq/Mq−1. Consider the order lowering operator

Λ : Mq → Hom(Γ, M̄q−1) ∼= Hom (Γ,C)⊗ M̄q−1
given by Λ(f)(γ) = (γ − 1)f.
The kernel of Λ is Mq−1. Now assume f ∈ Mq vanishes on Sq−1F . For every s ∈ S we have (s − 1)f|Sq−1F = 0 andhence, by induction hypothesis, (s − 1)f = 0. As S generates Γ, this means Λ(f) = 0 and so f ∈ Mq−1, so again byinduction hypothesis we get f = 0.We next show

Mq ∩ L2(SqF ) = Mq ∩ L2(Sq+jF )
for every j ≥ 0. The inclusion “⊃” is clear. We show “⊂” by induction on q. For q = 1 the claim is clear. So assume
q ≥ 2 and the claim proven for q − 1. We show Mq ∩ L2(Sq−1+jF ) ⊂ Mq ∩ L2(Sq+jF ) for every j ≥ 0. For this let
f ∈ Mq ∩ L2(Sq−1+jF ) and let s ∈ S. Then f(s−1z) = f(z) + f(s−1z) − f(z) = f(z) + (s − 1)f(z). The function f(z) isin L2(Sq−1+jF ) and the function (s − 1)f(z) is in Mq−1 ∩ L2(Sq−2+jF ); the latter space equals Mq−1 ∩ L2(Sq−1+jF ) byinduction hypothesis. It follows that f(s−1z) is in L2(Sq−1+jF ), so f ∈ L2(sSq−1+jF ). Since this holds for every s ∈ S,we get f ∈ L2(Sq+jF ) as claimed.From this we conclude the independence of S. Let S1 be a second finite symmetric set of generators containing the unit.Then there exists j ≥ 0 such that Sq1 ⊂ Sq+j . Hence it follows that Mq∩L2(Sq−11 F ) ⊂ Mq∩L2(Sq−1+jF ) = Mq∩L2(Sq−1F ).By symmetry we get Mq ∩ L2(Sq−11 F ) = Mq ∩ L2(Sq−1F ) as claimed. We have to show independence of the choice of F .So let F ′ be another fundamental set which is compatible with F . Then there exists j ≥ 0 such that SqF ′ ⊂ Sq+jF andwe prove independence as above.Finally, for the topology, let (fν) be a sequence in Mq ∩ L2(Sq−1F ) tending to zero. We argue as in the proof of
Mq ∩ L2(Sq−1F ) = Mq ∩ L2(Sq−1+jF ) to show that (fν) also tends to zero in L2(Sq−1+jF ). From here on the proof ofindependence of choices for the topology on the space L2

q(F ) proceeds as above.
We will remove the dependence on the choice of a fundamental set by giving a canonical choice (up to compatibility) inthe case when Γ\G is compact.
Lemma 4.4.
There exists a relatively compact fundamental set if and only if Γ\G is compact. Each relatively compact fundamental
set is locally finite and any two relatively compact fundamental sets are compatible.

Proof. Let π : G → Γ\G be the projection. This map is continuous and open. Let F be a relatively compactfundamental set, then Γ\G is the image under π of the compact set F , hence Γ\G is compact.For the converse assume that Γ\G is compact. For each x ∈ G fix a relatively compact open neighborhood Ux of x. Thesets π(Ux ) form an open covering of Γ\G, so finitely many suffice. This means there are x1, . . . , xn ∈ G such that thecompact set F̃ = Ux1 ∪ · · · ∪ Uxn contains a set of representatives. By Lemma 4.2 it contains a fundamental set which isnecessarily relatively compact.
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For the second assertion let F be a relatively compact fundamental set. Let U ⊃ F be a relatively compact openneighborhood of F . As Γ acts strongly discontinuously, it follows that U meets only finitely many translates of F andhence U meets only finitely many translates of F .Finally, let F1, F2 be two relatively compact fundamental sets. Let U be an open neighborhood of F1 that meets onlyfinitely many translates of F1. Then the family (γU)γ∈Γ is an open covering of G, so there are γ1, . . . γn such that
F 2 ⊂ γ1U ∪ · · · ∪ γnU . Now U is contained in a finite number of translates of F1, so there exists a finite set E ⊂ Γ suchthat F2 ⊂ EF1. By symmetry, we get the other direction, too.
From now on we assume that Γ is cocompact, i.e. Γ\G is compact. In this case we say that Γ is a uniform lattice in
G. We consider the space L2loc(G) of all locally square-integrable functions on G (modulo nullfunctions). So we have
f ∈ L2loc(G) if for every x ∈ G there exists an open neighborhood U such that f|U ∈ L2(U). This is equivalent to sayingthat f|K ∈ L2(K ) for every compact subset K ⊂ G. We have

L2
q(Γ\G) = H0

q
(Γ, L2loc(G)).

Definition 4.5.The elements of L2
q(Γ\G) will be called automorphic forms of order q. Automorphic forms of order 1 are classicalautomorphic forms. Those of order ≥ 2 are also referred to as automorphic forms of higher order.

Proposition 4.6.
For every q ≥ 0 we have

H1
q
(Γ, L2loc(G)) = 0.

Proof. Let F be a relatively compact fundamental set. By Lemma 2.1(b) it suffices to consider the case q = 0. Let
α : Γ→ L2loc(G) be a 1-cocycle, i.e. a map that satisfies α(γτ) = γα(τ) + α(γ). We set

f(x) = ∑
τ∈Γ α(τ)(x)1F (τ−1x).

A simple computation shows (1−γ)f = α(γ) and since α ∈ L2loc(G) it follows that f ∈ L2loc(G). The proposition follows.
Proposition 4.7.
For every q ≥ 1 there is a natural exact sequence of continuous linear maps,

0 → L2
q(Γ\G) → L2

q+1(Γ\G) → L2(Γ\G)NΓ(q) → 0.
Proof. This follows from Lemma 2.1 together with Proposition 4.6.
5. Lie groups

In this section G will be a Lie group. In this case we write
C∞q (Γ\G) = H0

q
(Γ, C∞(G)).

Proposition 5.1.
For a Lie group G and a discrete subgroup Γ we have

H1(Γ, C∞(G)) = 0.
Consequently, for every q ≥ 1 there is a natural exact sequence

0 → C∞q (Γ\G) → C∞q+1(Γ\G) → C∞(Γ\G)NΓ(q) → 0.
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Proof. This is a part of Proposition 2.3.2 in [4].
Let π ∈ Ĝ. A representation (β, Vβ) of G is said to be of type π, if it is of finite length and every irreducible subquotientis isomorphic to π. For a representation (η, Vη) we define the π-isotype as

Vη(π) def= ∑
Vβ⊂Vη

β of type π
Vβ ,

where the sum runs over all subrepresentations Vβ of type π. If π 6= π′, then Vη(π) ∩ Vη(π′) = 0.If Γ is a uniform lattice, then the representation of G on L2(Γ\G) is a direct sum of irreducible representations, eachoccuring with finite multiplicity, i.e.,
L2(Γ\G) ∼= ⊕

π∈Ĝ

mΓ(π)π,
with mΓ(π) ∈ N0.
Theorem 5.2 (Spectral decomposition).
Let G be a semisimple Lie group and Γ a uniform lattice in G. We write Vq = H0

q(Γ,Ω), where Ω = L2loc(G) or Ω = C∞(G).
For every q ≥ 1 there is an isotypical decomposition

Vq = ⊕
π∈ĜΓ

Vq(π),
and each Vq(π) is of type π itself. The exact sequence of Proposition 4.7 induces an exact sequence

0 → Vq(π) → Vq+1(π) → V1(π)mΓ(π)NΓ(q) → 0
for every π ∈ Ĝ.

Proof. For Ω = C∞(G) this is Theorem 2.3.5 of [4]. For Ω = L2loc(G) the result follows from the latter by densityarguments.
6. Sheaf cohomology

Let Y be a topological space which is path-connected and locally simply connected. Let Γ be the fundamental group of
Y and let X π−→ Y be the universal covering.For a sheaf F on Y define

H0
q(Y ,F ) def= H0

q
(Γ, H0(X, π∗F )).

Let Mod (R) be the category of R-modules, let ModR (Y ) be the category of sheaves of R-modules on Y , and let ModR (X )Γbe the category of sheaves over X with an equivariant Γ-action. Then H0
q(Y , ·) is a left exact functor from ModR (Y ) toMod (R). We denote its right derived functors by Hp

q(Y , ·) for p ≥ 0.
Proposition 6.1.
Assume that the universal cover X is contractible.

(a) For each p ≥ 0 one has a natural isomorphism Hp1 (Y ,F ) ∼= Hp(Y ,F ).
(b) If a sheaf F is H0(Y , ·)-acyclic, then it is H0

q(Y , ·)-acyclic for every q ≥ 1.
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Note that part (b) allows one to use flabby or fine resolutions to compute higher order cohomology.
Proof. We decompose the functor H0

q(Y , ·) as a composition of functors
ModR (Y ) π∗−→ ModR (X )Γ H0(X,·)−→ Mod (R [Γ]) H0

q(Γ,·)
−→ Mod (R).

The functor π∗ is exact and maps injectives to injectives. We claim that H0(X, ·) has the same properties. For theexactness, consider the commutative diagram
ModR (X )Γ Mod (R [Γ])
ModR (X ) Mod (R),

/ /H0

�� f �� f
//H0

where the vertical arrows are the forgetful functors. As X is contractible, the functor H0 below is exact. The forgetfulfunctors have the property, that a sequence upstairs is exact if and only if its image downstairs is exact. This impliesthat the above H0 is exact. It remains to show that H0 maps injective objects to injective objects. Let J ∈ ModR (X )Γ beinjective and consider a diagram with exact row in Mod (R [Γ]),
0 M N

H0(X,J ).
// //

��
φ

The morphism φ gives rise to a morphism φ : M × X → J , where M × X stands for the constant sheaf with stalk M.Note that H0(X,φ) = φ. As J is injective, there exists a morphism ψ : N × X → J making the diagram
0 M ×X N × X

J

/ / //

��
φ
zz ψ

commutative. This diagram induces a corresponding diagram on the global sections, which implies that H0(X,J ) isindeed injective.For a sheaf F on Y it follows that
Hp(Y ,F ) = Rp(H0(Y ,F )) = Rp H0

q(Γ, F ) ◦H0Γ ◦π∗ = Hp
q(Y ,F ).

Now let F be acyclic. Then we conclude Hp0 (Y ,F ) = 0 for every p ≥ 1, so the Γ-module V = H0(X, π∗F ) is Γ-acyclic.The claim follows from Lemma 2.1.
Let Z be a closed subset of Y and let U be its complement. Let i : Z ↪→ X and j : U ↪→ X denote the inclusions.
Proposition 6.2.
Let F be a sheaf on Y . The exact sequence

0 → j!(F|U ) → F → i∗(F|Z ) → 0
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gives rise to a long exact sequence of cohomology groups:

0→ H0
q,c(U,F )→ H0

q(Y ,F )→ H0
q(Z,F )→ H1

q,c(U,F )→ H1
q(Y ,F )

→ H1
q(Z,F )→ . . . → Hp

q,c(U,F )→ Hp
q(Y ,F )→ Hp

q(Z,F )→ . . .

Here H0
q,c(U,F ) stands for the group of all sections in H0

q(Y ,F ) whose support is contained in π−1(U) and Hp
q(Y ,F ) for

p ≥ 1 is the corresponding derived functor.

Proof. It is easy to see that H0
q
(
Y , j!(F|U )) = H0

q,c(U,F ). The functor F 7→ j!(F|U ) is exact and maps products ofinjective skyscraper sheaves to products of injective skyscraper sheaves. As any sheaf has a resolution consisting ofproducts of injective skyscraper sheaves (which are injective themselves), it follows that Hp
q
(
Y , j!(F|U )) = Hp

q,c(U,F )holds for every p ≥ 0. This proves the assertion.
Assume that X is contractible. Then Y is a classifying space for the group Γ. So any R [Γ]-module V gives rise to alocally constant sheaf V of R-modules over Y such that Hp(Γ, V ) ∼= Hp(Y , V) holds for every p ≥ 0.
Proposition 6.3.
We have natural isomorphisms Hp

q(Γ, V ) ∼= Hp
q(Y , V)

for all p ≥ 0, q ≥ 1.

Proof. Fix q ≥ 1. The functors V 7→ Hp
q(Γ, V ) form a universal δ-functor on Mod (R [Γ]). Let Sh (Y ) be the categoryof sheaves of R-modules over Y , so F 7→ Hp

q(Y ,F ) is a universal δ-functor on Sh (Y ). The functor of sheafificationSheaf : Mod (R [Γ]) → Sh (Y ), which to a module V attaches the locally constant sheaf V = Sheaf (V ), is exact. So
V 7→ Hp

q
(
Y ,Sheaf (V )) is a δ-functor on Mod (R [Γ]). We have to show universality, which we do as usual by showingerasability of Hp for p ≥ 1. For V ∈ Mod (R [Γ]) let

IV = {α : Γ→ V}

be the module of all maps from Γ to M. This is a Γ-module via
γ.α(τ) = γ(α(γ−1τ)).

Mapping v ∈ V to the constant map v , one gets an embedding V ↪→ IV . By Proposition 6.1 we have to show
Hp(Y ,Sheaf (IV )) = 0

for p ≥ 1. Let π : X → Y be the projection. Then
Sheaf (IV ) = π∗Ṽ ,

where Ṽ stands for the constant sheaf V on X . We now show that π∗Ṽ is acyclic. To this end we resolve Ṽ with specialacyclic sheaves, which are products of skyscraper sheaves with injective stalks. The images under π∗ of these are againproducts of skyscraper sheaves with injective stalks, hence acyclic. The global sections above and below are the same,so the cohomologies agree, i.e., we have Hp(Y , π∗Ṽ ) = Hp(X, Ṽ ).
As X is contractible, the right hand side is zero.

97



Higher order invariants in the case of compact quotients

7. Cohomology of lattices in Lie groups

In this section we set R = C. Let G be a semisimple Lie group with compact center and finitely many connectedcomponents. Let Γ ⊂ G be a uniform lattice which is torsion-free. Let Y = Γ\X , then Γ is the fundamental group ofthe manifold Y , and the universal covering X of Y is contractible. This means that we can apply the results of the lastsection. Compare the next result to the classical case [17].
Theorem 7.1.
Let (σ, E) be a finite dimensional irreducible representation of G. There is a natural isomorphism

Hp
q(Γ, E) ∼= Hp (g, K ,H0

q
(Γ, C∞(G))⊗ E) = ⊕

π∈Ĝ
χπ=χE∗

Hp (g, K , C∞q (Γ\G)(π)⊗ E),
where H (g, K , .) denotes (g, K )-cohomology and the direct sum is finite.

Proof. Let FE be the locally constant sheaf on Y corresponding to E . Let Ωp
Y be the sheaf of complex valued

p-differential forms on Y . Then Ωp
Y ⊗FE is the sheaf of FE-valued differential forms. These form a fine resolution of FE :

0 → FE → C∞ ⊗FE
d⊗1−→ Ω1

Y ⊗FE → . . .

Since π∗Ω•Y = Ω•X , we conclude that Hp
q(Γ, E) is the cohomology of the complex H0

q
(Γ,H0(X,Ω•X ⊗ E)). Let g and k bethe Lie algebras of G and K respectively, and let g = k ⊕ p be the Cartan decomposition. Then H0 (X,Ωp ⊗ FE

) =(
C∞(G)⊗∧p p

)K⊗E . Mapping a form ω in this space to (1⊗x−1)ω(x) one gets an isomorphism to (C∞(G)⊗∧p p⊗E
)K ,where K acts diagonally on all factors and Γ now acts on C∞(G) alone. The first claim follows. For the second, wereplace C∞q (Γ\G) by the sum of its isotypes according to Theorem 5.2. The direct sum can be pulled out of cohomologyto get Hp

q(Γ, E) ∼= ⊕
π∈Ĝ

H(g, K , Vq(π)⊗ E),
where Vq = C∞q (Γ\G). For each π there is a G-stable finite filtration

0 = F0 ⊂ · · · ⊂ Fn − Vq(π)
such that Fj /Fj−1 ∼= π∞. The exact sequence

0 → Fj−1 → Fj → π∞ → 0
induces a long exact cohomology sequence

0→ H0(g, K , Fj−1⊗E)→ H0(g, K , Fj⊗E)→ H0(g, K , π∞⊗E)→ H1(g, K , Fj−1⊗E)→ H1(g, K , Fj⊗E)
→ H1(g, K , π∞⊗E)→ . . . → Hp(g, K , Fj−1⊗E)→ Hp(g, K , Fj⊗E)→ Hp(g, K , π∞⊗E)→ . . .

Now assume χπ 6= χE∗ . By Theorem 4.1 of [1] we conclude Hp(g, K , π∞ ⊗ E) = 0 for all p. By induction on j one getsHp(g, K , Fj ⊗ E) = 0 for all p and all j . Hence in the above sum only those finitely many summands with χπ = χE∗remain.
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Taking q-th powers gives a natural surjective map
(
I/I2)⊗q → Iq/Iq+1.

This dualizes to an injection HomC
(
Iq/Iq+1,C) ↪→ HomC

(
I/I2,C)⊗q.

For p = 1 and q ≥ 1 we thus get,
H1
q−1(Γ,C) ∼= HomC(Iq/Iq+1,C) ↪→ HomC(I/I2,C)⊗q ∼= H1(Γ,C)⊗q ∼=

⊕
π∈Ĝ
χπ=χC

mΓ(π) H1(g, K , π∞)

⊗q

.

8. Arithmetic groups

In this section we put R = C. Let G be a linear algebraic group over Q which is simple and simply connected and suchthat G = G(R) has no compact component. By strong approximation, the group G = G(Q) is dense in G(Afin), where Afinis the ring of finite adeles. Let Kfin be a given compact open subgroup of G(Afin) and let Γ = G ∩ Kfin. Then (G,Γ) is aHecke pair and Γ can be chosen to be effective. In this case the congruence completion is G ∼= G(Afin). Let Ĝ(A) be theunitary dual of G(A). Note that every π ∈ Ĝ(A) is a tensor product
π = (⊗

p
πp

)
⊗ π∞,

where the product runs over all primes p and πp ∈ Ĝ(Qp). We also denote the representation ⊗p πp of the group G(Afin)by πfin.Let (π, V ) be a representation of the locally compact group G(Afin). A vector v ∈ V is called smooth, if v is stabilized byan open subgroup of G(Afin). For any continuous representation, the set V∞ of smooth vectors is a dense, G(Afin)-stablesubspace.In this paper we assume that
Q-rank (G) = 0.

This implies that G(Q)\G(A) is compact. For π ∈ Ĝ(A) let
m(π) = dim HomG(A) (Vπ , L2(G(Q)\G(A))).

Then m(π) ∈ N0 and
L2(G(Q)\G(A)) ∼= ⊕

π∈Ĝ(A)
m(π)π.

Fix a congruence subgroup Σ of Γ. Then there exists a compact open subgroup KΣ of G(Afin) such that Σ = KΣ ∩G(Q).The G-equivariant identification G(Q)\G(A)/KΣ ∼= Σ\G gives an isomorphism of unitary G-representations
L2(G(Q)\G(A))KΣ ∼= L2(Σ\G).

Hence we get
L2(Σ\G) ∼= ⊕

π∞∈Ĝ

mΣ(π∞)π∞,
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where
mΣ(π∞) = ∑

πfin∈Ĝ(Afin)
m(πfin ⊗ π∞) dim (πKΣfin ).

For π ∈ Ĝ we write
h1(π) = dim H1(g, K , π∞) ∈ N0.We have shown that for each congruence subgroup Σ there is a natural inclusion

H1
q(Σ,C) ↪→  ⊕

π∈Ĝ(A)
m(π)h1(π)πKΣfin

⊗q .
Taking limits we see that there is a natural map of G(Afin)-representations

Ĥ1
q(C) ↪→  ⊕

π∈Ĝ(A)
m(π)h1(π)πfin

⊗q .
We now state the main theorem.
Theorem 8.1.
(a) Let q ≥ 1. The G(Afin)-representation on Ĥ1

q(C) is the space of smooth vectors of a unitary representation Ĥ1
q(C)u

which is a subrepresentation of the tensor power

 ⊕
π∈Ĝ(A)

m(π)h1(π)πfin
⊗q ∼= H1 (g, K , L2(G(Q)\G(A)))⊗q.

(b) The G(A)-representation on Ĥ
0
q
(
L2loc(G)) is the space of G(Afin)-smooth vectors of a unitary representation which is

isomorphic to Ĥ1
q(C)u ⊗ L2(G(Q)\G(A)).

Here G(Afin) acts on both tensor factors, but G = G(R) acts only on the second.

Proof. Part (a) has been shown in this section above and part (b) is then a direct application of Proposition 3.4.
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