The group $\mathrm{Sp}_{10}(\mathbb{Z})$ is $(2,3)$-generated

Research Article

Vadim Vasilyev ${ }^{1 *}$, Maxim Vsemirnov ${ }^{1+}$

1 St. Petersburg Department of V.A. Steklov Mathematical Institute, Russian Academy of Sciences, St. Petersburg, Russia

Received 8 September 2010; accepted 16 November 2010

```
Abstract: It is proved that the group Sp
MSC: 20F05, 20G30
Keywords: Symplectic groups • (2,3)-generation • Symplectic transvections
    @ Versita Sp. z o.o.
```


1. Introduction

A group is called (2,3)-generated if it can be generated by an involution and an element of order 3. For instance, $\mathrm{PSL}_{2}(\mathbb{Z})$ is generated by the projective images of the matrices

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right)
$$

of (projective) order 2 and 3, respectively. Moreover, it is well known that $\mathrm{PSL}_{2}(\mathbb{Z})$ is isomorphic to the free product of the cyclic group of order 2 and the cyclic group of order 3. Thus, the problem of $(2,3)$-generation is closely related to the problem of description of the normal subgroups of $\mathrm{PSL}_{2}(\mathbb{Z})$.
L. Di Martino and N . Vavilov conjectured in [1, 2] that, for any finitely generated commutative ring R, elementary Chevalley groups over R are $(2,3)$-generated provided their rank is large enough. For classical matrix groups over finite fields this conjecture was settled affirmatively in [4]. For matrix groups over other finitely generated rings see e.g. [8, 9]. The latter results are only asymptotic, i.e., they do not give the answer for low-dimensional groups. However, for certain

[^0]series of groups and certain rings the problem can be solved completely. For instance, joint efforts of several authors $[6,7,11-14]$ led to the discovery that the groups $\mathrm{SL}_{n}(\mathbb{Z})$ and $G L_{n}(\mathbb{Z})$ are $(2,3)$-generated precisely when $n \geq 5$.

It turns out that the problem for the symplectic groups $\mathrm{Sp}_{2 n}(\mathbb{Z})$ is more delicate than for $\mathrm{SL}_{n}(\mathbb{Z})$, because all general results in the symplectic case either required invertibility of 2 in the ring under consideration [6] or dealt only with groups over finite fields [5]. Moreover, these methods cannot be directly transferred to $\mathrm{Sp}_{2 n}(\mathbb{Z})$. The evidence arising from the solution of a similar problem for $\mathrm{SL}_{n}(\mathbb{Z})$ shows that low-dimensional cases require a separate treatment.
We began a systematic study of the (2,3)-generation problem for $\mathrm{Sp}_{2 n}(\mathbb{Z})$ in $[10]$, where the cases $n \leq 4$ were considered. We also conjectured that $\mathrm{Sp}_{2 n}(\mathbb{Z})$ is $(2,3)$-generated precisely when $n \geq 4$. In the present paper we make the next step and give the affirmative answer for $\mathrm{Sp}_{10}(\mathbb{Z})$. Our methods are similar to those developed in [10], but even a subtle increase of the dimension led to a significant growth of computational efforts. It might be rather difficult to proceed in the same manner for larger values of n.

2. Main result and notation

Let I_{n} be the $n \times n$ identity matrix. Recall that up to conjugation

$$
\mathrm{Sp}_{2 n}(\mathbb{Z})=\left\{g \in \mathrm{GL}_{2 n}(\mathbb{Z}): g^{T} J g=J\right\}
$$

where

$$
J=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right)
$$

Our main result is the following theorem.

Theorem 2.1.
The group $\mathrm{Sp}_{10}(\mathbb{Z})$ is $(2,3)$-generated. More precisely, define

$$
x=\left(\begin{array}{rrrrrrrrrr}
1 & 1 & 0 & 0 & -1 & 0 & -2 & 1 & 1 & 3 \\
0 & 0 & 0 & 1 & 0 & 2 & 0 & 3 & -3 & 1 \\
0 & 1 & 1 & 0 & -2 & -1 & -3 & 0 & 1 & 3 \\
0 & -2 & 0 & 0 & 0 & -1 & 3 & -1 & 0 & -2 \\
0 & 0 & 0 & -1 & -1 & -3 & -1 & -3 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & -2 & 0 & -1
\end{array}\right), \quad y=\left(\begin{array}{rrrrrrrrrr}
2 & -2 & 1 & -1 & -3 & -3 & 2 & -5 & 6 & 3 \\
-2 & 5 & -3 & -4 & 3 & 2 & -7 & 0 & -1 & 1 \\
3 & 3 & -2 & -1 & 2 & 5 & 0 & 5 & -1 & 3 \\
-1 & 0 & 0 & 2 & 1 & 1 & -1 & 1 & -4 & -3 \\
1 & 1 & -1 & 1 & 2 & 3 & 1 & 3 & -3 & -2 \\
1 & -1 & 1 & 3 & 0 & 2 & 2 & 3 & -3 & -1 \\
-3 & 5 & -3 & -4 & 4 & 2 & -6 & 1 & -2 & -1 \\
2 & -3 & 2 & 3 & -3 & -1 & 3 & -1 & 1 & 1 \\
3 & -4 & 3 & 7 & -3 & 1 & 4 & 1 & -3 & -1 \\
-2 & 4 & -3 & -3 & 5 & 3 & -3 & 2 & -3 & -3
\end{array}\right) .
$$

Then $x^{2}=y^{3}=I_{10}$ and $\mathrm{Sp}_{10}(\mathbb{Z})=\langle x, y\rangle$.

Remark 2.2.

The method of finding x and y is similar to that used in [10]. The starting point is a pair of parametric matrices

$$
x_{0}=\left(\begin{array}{rrrrrrrrrr}
0 & 0 & 1 & 0 & r_{1} & 0 & 0 & 0 & 0 & r_{3} \\
0 & 0 & 0 & 1 & r_{2} & 0 & 0 & 0 & 0 & r_{4} \\
1 & 0 & 0 & 0 & -r_{1} & 0 & 0 & 0 & 0 & 0
\end{array}-r_{3}\right)\left(\begin{array}{rrrrrrrrrr}
1 & 0 & 0 & 0 & r_{7} & r_{9} & 0 & r_{11} & 0 & r_{13} \\
0 & 1 & 0 & 0 & -r_{2} & 0 & 0 & 0 & 0 & -r_{4} \\
0 & 1 & 0 & 0 & 0 & 0 & r_{8} & r_{10} & 0 & r_{12} \\
0 & 0 & 0 & r_{14} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{5} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -r_{5} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & r_{6} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -r_{6} \\
0 & 0 & 1 & 0 & -1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1
\end{array}\right)
$$

of order 2 and 3 , respectively. Next we try to find r_{1}, \ldots, r_{14} such that x_{0}, y_{0} fix some skew-symmetric form J_{0}, which remains non-degenerate modulo any prime p. This assumption implies certain relations between r_{1}, \ldots, r_{14}, which allow to reduce the search area. For instance, the following parameters will suit us:

$$
r_{1}=r_{2}=r_{14}=-1, r_{3}=1, r_{4}=-4, r_{5}=3, r_{6}=-2, r_{7}=r_{10}=r_{11}=2, r_{8}=r_{9}=r_{12}=0, r_{13}=4
$$

Finally, we find an invertible integral matrix Z such that $J_{0}=Z^{\top} J Z$ and set $x=Z x_{0} Z^{-1}, y=Z y_{0} Z^{-1}$. In our case

$$
Z=\left(\begin{array}{rrrrrrrrrr}
0 & 5 & 0 & 4 & 0 & 3 & 2 & 0 & -1 & 0 \\
0 & 0 & 1 & -2 & 1 & 2 & -4 & 2 & -1 & 1 \\
2 & 8 & 1 & 7 & 0 & 5 & 5 & 1 & 2 & 1 \\
-1 & -5 & -1 & -4 & 0 & -3 & -3 & -1 & -1 & -2 \\
0 & 0 & -2 & 1 & 0 & -2 & 2 & -3 & 1 & -2 \\
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & -2 & 0 & -3 & 1 & -1 & -3 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -3 \\
0 & -2 & -1 & -1 & 0 & -3 & 0 & -2 & 1 & 0
\end{array}\right) .
$$

We omit further computational details.

The claim about the orders of x and y is trivial. It is also straightforward to verify that $\langle x, y\rangle \subseteq \operatorname{Sp}_{10}(\mathbb{Z})$. To prove the converse inclusion we use the well-known fact (e.g. see Theorem 5.3.4 in [3]) that $\mathrm{Sp}_{2 n}(\mathbb{Z})$ coincides with the elementary symplectic group $\mathrm{ESp}_{2 n}(\mathbb{Z})$. Recall the definition of $\mathrm{ESp}_{2 n}(\mathbb{Z})$. For $1 \leq i, j \leq 2 n$, let $e_{i, j}$ be the $2 n \times 2 n$ matrix with 1 in the i th row and j th column and zeros elsewhere. Define

$$
\begin{aligned}
& P_{i, j}(k)= \begin{cases}I_{2 n}+k \cdot\left(e_{i, j+n}+e_{j, i+n}\right) & 1 \leq i<j \leq n, \\
I_{2 n}+k \cdot e_{i, i+n} & 1 \leq i=j \leq n,\end{cases} \\
& Q_{i, j}(k)= \begin{cases}I_{2 n}+k \cdot\left(e_{i+n, j}+e_{j+n, i}\right) & 1 \leq i<j \leq n, \\
I_{2 n}+k \cdot e_{i+n, i} & 1 \leq i=j \leq n,\end{cases} \\
& R_{i, j}(k)=I_{2 n}+k \cdot\left(e_{i, j}-e_{j+n, i+n}\right) \\
& 1 \leq i \neq j \leq n .
\end{aligned}
$$

Notice that, for $k \in \mathbb{Z}$,

$$
P_{i, j}(k)=\left(P_{i, j}(1)\right)^{k}, \quad Q_{i, j}(k)=\left(Q_{i, j}(1)\right)^{k}, \quad R_{i, j}(k)=\left(R_{i, j}(1)\right)^{k} .
$$

Following [3, Chapter 5] we define $E \mathrm{ESp}_{2 n}(\mathbb{Z})$ as the group generated by the matrices $P_{i, j}(1), Q_{i, j}(1), 1 \leq i \leq j \leq n$, and $R_{i, j}(1), 1 \leq i \neq j \leq n$.
Thus, to prove the inclusion $\mathrm{ESp}_{10}(\mathbb{Z}) \subseteq\langle x, y\rangle$ it is enough to show that $P_{i, j}(1), Q_{i, j}(1), R_{i, j}(1) \in\langle x, y\rangle$. We split the proof into several steps, which are presented in the next section. In the proof we construct a sequence of matrices in $\langle x, y\rangle$. In order to assist the reader and make the construction more transparent we use the following notation:

- A_{i} are upper block-triangular matrices in $\langle x, y\rangle$ of the shape

$$
\left(\begin{array}{cc}
I_{5} & L \tag{1}\\
0 & I_{5}
\end{array}\right)
$$

- B_{i} are lower block-triangular matrices in $\langle x, y\rangle$ of the shape

$$
\left(\begin{array}{ll}
I_{5} & 0 \tag{2}\\
L & I_{5}
\end{array}\right)
$$

- C_{i} are upper block-triangular matrices in $\langle x, y\rangle$ of the shape

$$
\left(\begin{array}{cc}
K & L \tag{3}\\
0 & M
\end{array}\right)
$$

where K, L and M are 5×5 matrices;

- D_{i} are block-diagonal matrices in $\langle x, y\rangle$ of the shape

$$
\left(\begin{array}{cc}
K & 0 \tag{4}\\
0 & \left(K^{T}\right)^{-1}
\end{array}\right)
$$

where K is a 5×5 matrix and T denotes the transpose of a matrix;

- g_{i} are auxiliary matrices from $\langle x, y\rangle$ with no prescribed shape.

3. Detailed proofs

To assist the reader in verifying the proof, the corresponding Magma file is also available as a supplementary information to the article.

Lemma 3.1.

We have $P_{1,1}(4) \in\langle x, y\rangle$ and $P_{1, i}(2), R_{1, i}(2) \in\langle x, y\rangle$ for $2 \leq i \leq 5$.

Proof. First of all, let us define

$$
\begin{aligned}
& g_{1}=y(x y)^{3}\left(x y^{2}\right)^{4}, \\
& g_{2}=(x y)^{2}\left(x y^{2}\right)^{2}(x y)^{3}, \\
& g_{3}=y\left(x y^{2}\right)^{2} x y\left(x y x y^{2}\right)^{2}, \\
& C_{1}=\left(\left(x y x y^{2}\right)^{3} g_{1}\right)^{4} .
\end{aligned}
$$

Now we can construct first matrices of shape (1):

$$
\begin{aligned}
& A_{1}=\left(y^{-1} g_{2} y x\right)^{-1} C_{1} y^{-1} g_{2} y x \cdot g_{3}^{-1} C_{1}^{-1} g_{3}=P_{1,1}(4) P_{1,3}(2) P_{1,5}(2) \\
& A_{2}=\left(g_{2}^{-1} C_{1} g_{2} x\right)^{2}=P_{1,1}(-4) P_{1,3}(-4) \\
& A_{3}=x A_{1} A_{2} x A_{1}=P_{1,3}(-4) \\
& A_{4}=A_{3} A_{2}^{-1}=P_{1,1}(4)
\end{aligned}
$$

This gives the first inclusion stated in the lemma. Let us set

$$
\begin{aligned}
& g_{4}=\left(x y^{2}\right)^{3}, \\
& g_{5}=x y x y^{2} x, \\
& g_{6}=y\left(x y^{2}\right)^{2}(x y)^{2}\left(x y^{2}\right)^{2} x y\left(x y^{2}\right)^{3} x, \\
& g_{7}=\left(x y x y^{2}\right)^{2}\left(x y^{2}\right)^{3} x, \\
& g_{8}=\left(x y^{2}\right)^{3}\left((x y)^{2} x y^{2} x y\left(x y^{2}\right)^{2}\right)^{2} .
\end{aligned}
$$

Using these matrices and A_{1}, \ldots, A_{4} we can find more matrices of the desired shape (1):

$$
\begin{aligned}
& A_{5}=g_{5}^{-1} C_{1} g_{5} \cdot g_{2} \times C_{1} \times g_{2}^{-1} \cdot A_{3}^{2} A_{4}^{2}=P_{1,2}(4), \\
& A_{6}=\left(x g_{5}^{-1} C_{1} g_{5}\right)^{2} \cdot\left(g_{5} \times g_{1}^{-1}\right)^{-1} C_{1} g_{5} \times g_{1}^{-1} \cdot\left(g_{2}^{2} \times g_{4}\right)^{-1} C_{1}^{-1} g_{2}^{2} \times g_{4} \cdot A_{1}=P_{1,4}(4), \\
& A_{7}=\left(g_{2}^{-1} g_{4} x\right)^{-1} A_{1} g_{2}^{-1} g_{4} x \cdot g_{6}^{-1} A_{1} g_{6} \cdot A_{1}^{-4} A_{3}^{-1} A_{4}^{-4} A_{5} A_{6}=P_{1,5}(2), \\
& A_{8}=A_{4}^{-1} A_{1} A_{7}^{-1}=P_{1,3}(2), \\
& A_{9}=\left(g_{2} \times g_{4}\right)^{-1} A_{8} g_{2} \times g_{4} \cdot A_{4}^{-1} A_{8}^{-2}=P_{1,2}(2) .
\end{aligned}
$$

We have already proved that $P_{1,2}(2), P_{1,3}(2), P_{1,5}(2) \in\langle x, y\rangle$. Before proving that $P_{1,4}(2)$ belongs to $\langle x, y\rangle$ we have to construct a few block-diagonal matrices of shape (4). Let us consider

$$
\begin{aligned}
& D_{1}=\left(x A_{6}\right)^{2} A_{4}^{-4} A_{6}^{-1} A_{7}^{2} A_{9}^{-2}=R_{1,2}(-4), \\
& D_{2}=x D_{1} x \cdot A_{4}^{-8} A_{6}^{-3} A_{7}^{2} A_{8}^{6}=R_{1,4}(-4) \\
& D_{3}=g_{7}^{-1} D_{1}^{-1} g_{7} \cdot D_{2} A_{4}^{-8} A_{6}^{3} A_{7}^{6}=R_{1,5}(8) \\
& D_{4}=g_{8}^{-1} C_{1} g_{8} \cdot D_{2}^{3} D_{3}^{-1} A_{4}^{74} A_{6}^{7} A_{7}^{4} A_{8}^{-20} A_{9}^{-5}=R_{1,4}(2), \\
& D_{5}=g_{4}^{-1} C_{1}^{-1} g_{4} \cdot D_{4} A_{4}^{-2} A_{6}^{-1} A_{7}^{-2} A_{8}^{2} A_{9}=R_{1,5}(-4)
\end{aligned}
$$

In particular, we have just shown the inclusion $R_{1,4}(2) \in\langle x, y\rangle$. Finally, let us set

$$
\begin{aligned}
& g_{9}=\left(x y^{2}\right)^{6}(x y)^{2} x y^{2} x y\left(x y^{2}\right)^{2} \\
& C_{2}=\left(g_{2}^{-1} g_{4} x g_{2} x g_{4}\right)^{-1} A_{8} g_{2}^{-1} g_{4} x g_{2} x g_{4} \cdot D_{4} D_{5}^{-2} A_{4}^{25} A_{6}^{-1} A_{7}^{-4} A_{9}^{2}=P_{1,4}(2) R_{1,5}(2)
\end{aligned}
$$

Now we are able to complete the proof by constructing the following matrices:

$$
\begin{aligned}
D_{6} & =\left(g_{2} \times g_{4}\right)^{-1} C_{2} g_{2} \times g_{4} \cdot A_{4}^{-1} A_{6}^{2} A_{8}^{-16} A_{9}^{-6}=R_{1,5}(2) \\
A_{10} & =C_{2} D_{6}^{-1}=P_{1,4}(2) \\
D_{7} & =g_{9}^{-1} C_{1}^{-1} g_{9} \cdot D_{4}^{3} A_{4}^{28} A_{7}^{4} A_{8}^{24} A_{9}^{6} A_{10}^{-9}=R_{1,2}(2) \\
D_{8} & =\left(g_{2}^{-1} g_{4} \times g_{2} \times g_{4}\right)^{-1} A_{9} g_{2}^{-1} g_{4} \times g_{2} \times g_{4} \cdot D_{4}^{-5} D_{6}^{-6} A_{4}^{104} A_{7}^{10} A_{8}^{-4} A_{9}^{-5} A_{10}^{9}=R_{1,3}(2)
\end{aligned}
$$

Let us define two subsets of \mathbb{Z}^{10} :

$$
\begin{align*}
& U_{1}=\left\{u=\left(u_{1}, \ldots, u_{10}\right)^{T}: u_{6}=u_{7}=\ldots=u_{10}=0\right\} \\
& U_{2}=\left\{u=\left(u_{1}, \ldots, u_{10}\right)^{T}: u_{1}=u_{2}=\ldots=u_{5}=0\right\} \tag{5}
\end{align*}
$$

Remark 3.2.
Clearly, $I_{10}+u v^{\top} J+v u^{\top} J$ has shape (1) if $u, v \in U_{1}$ and has shape (2) if $u, v \in U_{2}$.

Lemma 3.3.

We have $P_{1,1}(2), P_{i, j}(2) \in\langle x, y\rangle$, where $2 \leq i \leq j \leq 5$.

Proof. First, we explain further constructions that are used in the proof of the lemma. Let u, v be two integral column-vectors orthogonal with respect to J, i.e., $v^{\top} J u=0$. A direct computation shows that

$$
\begin{equation*}
S=I_{10}+u v^{\top} J+v u^{\top} J \in S p_{10}(\mathbb{Z}) \tag{6}
\end{equation*}
$$

If we take

$$
\begin{equation*}
u=(1,0,0,0,0,0,0,0,0,0)^{T} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
v=\left(\left(a_{2} b_{2}+a_{3} b_{3}+a_{4} b_{4}+a_{5} b_{5}\right) / 2, b_{2}, b_{3}, b_{4}, b_{5}, 0,-a_{2},-a_{3},-a_{4},-a_{5}\right)^{T} \tag{8}
\end{equation*}
$$

where all coefficients a_{i} and b_{i} are even, then we can write S as

$$
\begin{equation*}
S=\prod_{i=2}^{5} R_{1, i}\left(a_{i}\right) \cdot \prod_{i=2}^{5} P_{1, i}\left(b_{i}\right) \tag{9}
\end{equation*}
$$

In other words, since $a_{2}, a_{3}, a_{4}, a_{5}, b_{2}, b_{3}, b_{4}, b_{5}$ are assumed to be even, S can be written as a product of suitable powers of $D_{7}, D_{8}, D_{4}, D_{6}, A_{9}, A_{8}, A_{10}$, and A_{7}. Hence, such S belongs to $\langle x, y\rangle$ by Lemma 3.1. Assume further that $g \in\langle x, y\rangle$ and $g^{-1} u, g^{-1} v$ belong to U_{1}. Then $g^{-1} S g \in\langle x, y\rangle$ and

$$
g^{-1} S g=I_{10}+\left(g^{-1} u\right)\left(g^{-1} v\right)^{T} g^{T} J g+\left(g^{-1} v\right)\left(g^{-1} u\right)^{T} g^{\top} J g=I_{10}+\left(g^{-1} u\right)\left(g^{-1} v\right)^{T} J+\left(g^{-1} v\right)\left(g^{-1} u\right)^{T} J
$$

has shape (1) by the remark preceding the statement of the lemma. Moreover, the above conditions on v guarantee that $g^{-1} S g$ belongs to $\left\langle P_{i, i}(4), P_{i, j}(2): 1 \leq i<j \leq 5\right\rangle$.
Let us describe the strategy which is used in further computations.

1. We search for $g \in\langle x, y\rangle$ such that the last five entries in the first column of g^{-1} vanish (this is equivalent to the condition $g^{-1} u \in U_{1}$, where u is given by (7)).
2. We find v of the form (8) such that $g^{-1} v \in U_{1}$, and find the corresponding decomposition (9) for S. After that we evaluate $g^{-1} S g$.
3. Finally, to simplify the subsequent calculations we multiply $g^{-1} S g$ by suitable powers of

$$
P_{1,1}(4), P_{1,2}(2), \ldots, P_{1,5}(2) \in\langle x, y\rangle
$$

(i.e., respectively by powers of $A_{4}, A_{9}, A_{8}, A_{10}, A_{7}$ defined in the proof of Lemma 3.1) and obtain matrices from $\left\langle P_{i, i}(4), P_{i, j}(2): 2 \leq i<j \leq 5\right\rangle$.

Now we present the results of computation based on the above strategy. Let

$$
\begin{aligned}
& g_{10}=y^{2}\left((x y)^{7} x y^{2}\right)^{2} x y\left(x y^{2}\right)^{2} x y x y^{2}, \\
& g_{11}=y^{2}\left(\left(x y^{2}\right)^{3} x y\left(x y^{2}\right)^{4}\right)^{2} x y x y^{2} x, \\
& g_{12}=y^{2}\left(x y^{2}\right)^{4} x y\left(x y^{2}\right)^{9} x y\left(x y^{2}\right)^{4} x y x y^{2} x, \\
& g_{13}=y x y^{2}\left((x y)^{6} x y^{2}(x y)^{3}\right)^{2}, \\
& g_{14}=y x y^{2} x y x y^{2}\left(x y\left(x y^{2}\right)^{5}\right)^{2}\left(\left(x y^{2}\right)^{2} x y\right)^{2} x y x y^{2}, \\
& g_{15}=y\left(x y^{2}\right)^{3}(x y)^{2}\left(x y^{2}\right)^{4} x y x y^{2}(x y)^{4}\left(x y^{2}\right)^{4}(x y)^{4} x y^{2} x y x y^{2} x, \\
& g_{16}=\left(x y^{2}\right)^{2} x y x y^{2} x y\left(x y^{2}\right)^{9} x y\left(x y^{2}\right)^{7} x, \\
& g_{17}=y^{2} x y^{2}(x y)^{2}\left(x y^{2}\right)^{8} x y\left(x y^{2}\right)^{2} x y x y^{2} x y\left(x y^{2}\right)^{2} x y\left(x y^{2}\right)^{3}, \\
& g_{18}=\left(x y^{2}\right)^{2} x y\left(x y^{2}\right)^{4}\left(x y x y^{2}\right)^{2} x y^{2}(x y)^{2}\left(x y^{2}\right)^{2} x y x y^{2}(x y)^{2}\left(x y^{2}\right)^{2}(x y)^{2}\left(x y^{2} x y\right)^{2}\left(x y^{2}\right)^{2} x y x, \\
& g_{19}=y^{2}\left(\left(x y^{2}\right)^{3} x y\right)^{2} x y^{2} x y\left(x y^{2}\right)^{2}\left(x y^{2} x y\right)^{3} x y\left(x y^{2}\right)^{2} x y\left(x y x y^{2}\right)^{2} x y x, \\
& g_{20}=y^{2} x y x y^{2}(x y)^{10} x y^{2}(x y)^{5} x y^{2} x y\left(x y^{2}\right)^{3} x y x, \\
& g_{21}=\left(x y^{2}\right)^{4} x y\left(x y^{2}\right)^{9}\left(x y\left(x y^{2}\right)^{2}\right)^{2} x y x y^{2}(x y)^{3} x y^{2} x y\left(x y^{2}\right)^{3} x, \\
& g_{22}=x y^{2}(x y)^{2}\left(x y^{2}\right)^{2}(x y)^{7} x y^{2}\left(x y^{2} x y\right)^{2} .
\end{aligned}
$$

All these matrices as well as $g_{16} g_{2} \times g_{4}$ and $g_{11} g_{2} \times g_{4}$ satisfy the condition $g^{-1} u \in U_{1}$. Using the idea described at the beginning of the proof we can find 15 upper-block triangular matrices $A_{11}, \ldots, A_{25} \in\langle x, y\rangle \cap\left\langle P_{i, i}(4), P_{i, j}(2): 2 \leq i<\right.$ $j \leq 5\rangle$:

$$
\begin{aligned}
& A_{11}=g_{10}^{-1} D_{7}^{13} A_{7}^{3} A_{8}^{-1} A_{9}^{-6} A_{10}^{3} g_{10} \cdot A_{4}^{310} A_{7}^{2} A_{8}^{708} A_{9}^{325} A_{10}^{-335}, \\
& A_{12}=g_{11}^{-1} D_{7} A_{7}^{2} A_{8}^{2} A_{9}^{-4} A_{10}^{-2} g_{11} \cdot A_{4}^{11} A_{7}^{2} A_{8}^{36} A_{9}^{10} A_{10}^{-17}, \\
& A_{13}=g_{12}^{-1} D_{7}^{-5} A_{7}^{7} A_{8}^{-22} A_{9}^{-12} A_{10}^{-15} g_{12} \cdot A_{4}^{-54} A_{7}^{5} A_{8}^{-272} A_{9}^{-92} A_{10}^{107}, \\
& A_{14}=g_{11}^{-1} D_{7}^{45} A_{7}^{24} A_{8}^{24} A_{9}^{-62} A_{10}^{-15} g_{13} \cdot A_{4}^{2787} A_{7}^{15} A_{8}^{1675} A_{9}^{551} A_{10}^{-5577}, \\
& A_{15}=g_{14}^{-1} D_{7} A_{7} A_{8}^{2} A_{9}^{-4} A_{10}^{-2} g_{14} \cdot A_{4}^{13} A_{7}^{16} A_{8}^{41} A_{9}^{21} A_{10}^{-14}, \\
& A_{16}=g_{15}^{-1} D_{7}^{2} A_{7} A_{8}^{3} A_{9}^{-4} A_{10}^{-2} g_{15} \cdot A_{4}^{12} A_{7}^{19} A_{8}^{94} A_{9}^{59} A_{10}^{-18}, \\
& A_{17}=g_{10}^{-1} D_{7}^{-12} A_{7} A_{8}^{-4} A_{9}^{11} g_{16} \cdot A_{4}^{158} A_{7}^{8} A_{8}^{-867} A_{9}^{-288} A_{10}^{284}, \\
& A_{18}=\left(g_{16} g_{2} \times g_{4}\right)^{-1} D_{7}^{-12} A_{7} A_{8}^{-4} A_{9}^{11} g_{16} g_{2} \times g_{4} \cdot A_{4}^{147} A_{7}^{8} A_{8}^{841} A_{9}^{274} A_{10}^{-289}, \\
& A_{19}=\left(g_{11} g_{2} \times g_{4}\right)^{-1} D_{7} A_{7}^{2} A_{8}^{2} A_{9}^{-4} A_{10}^{-2} g_{11} g_{2} \times g_{4} \cdot A_{4}^{15} A_{7}^{2} A_{8}^{-62} A_{9}^{-20} A_{10}^{17}, \\
& A_{20}=g_{17}^{-1} D_{7}^{-34} A_{7}^{5} A_{8}^{14} A_{9}^{33} A_{10}^{4} g_{17} \cdot A_{4}^{1186} A_{7}^{-18} A_{8}^{237} A_{9}^{28} A_{10}^{-2343}, \\
& A_{21}=g_{18}^{-1} D_{7}^{2} A_{7}^{7} A_{8}^{25} A_{9}^{6} A_{10}^{-9} g_{18} \cdot A_{4}^{-8} A_{7}^{-4} A_{8}^{-18} A_{9}^{-14} A_{10}^{4}, \\
& A_{22}=g_{19}^{-1} A_{8}^{-3} A_{9}^{-1} A_{10} g_{19} \cdot A_{4}^{-72} A_{7}^{-59} A_{8}^{-150} A_{9}^{-50} A_{10}^{93}, \\
& A_{23}=g_{20}^{-1} D_{7}^{-1} A_{7} A_{8}^{5} A_{9}^{2} A_{10}^{-1} g_{20} \cdot A_{4}^{4} A_{8} A_{9}^{4} A_{10}^{-1}, \\
& A_{24}=g_{21}^{-1} D_{7}^{-1} A_{7} A_{8}^{-13} A_{9}^{-6} A_{10}^{6} g_{21} \cdot A_{4}^{-34} A_{7}^{-43} A_{8}^{135} A_{9}^{34} A_{10}^{-26}, \\
& A_{25}=g_{22}^{-1} D_{7}^{11} A_{7}^{11} A_{8}^{61} A_{9}^{5} A_{10}^{-18} g_{22} \cdot A_{4}^{-176} A_{7}^{-358} A_{8}^{-984} A_{9}^{-134} A_{10}^{530} .
\end{aligned}
$$

The matrices A_{11}, \ldots, A_{25} can be written in the following way:

$$
\begin{aligned}
& A_{i}=I_{10}+k_{1}^{(i)} e_{2,7}+k_{2}^{(i)}\left(e_{2,8}+e_{3,7}\right)+k_{3}^{(i)}\left(e_{2,9}+e_{4,7}\right)+k_{4}^{(i)}\left(e_{2,10}+e_{5,7}\right)+k_{5}^{(i)} e_{3,8} \\
&+k_{6}^{(i)}\left(e_{3,9}+e_{4,8}\right)+k_{7}^{(i)}\left(e_{3,10}+e_{5,8}\right)+k_{8}^{(i)} e_{4,9}+k_{9}^{(i)}\left(e_{4,10}+e_{5,9}\right)+k_{10}^{(i)} e_{5,10} .
\end{aligned}
$$

For reader's convenience, we present the values of the coefficients $k_{j}^{(i)}$ in Table 1.

Table 1. The coefficients $k_{j}^{(i)}$

i	$k_{1}^{(i)}$	$k_{2}^{(i)}$	$k_{3}^{(i)}$	$k_{4}^{(i)}$	$k_{5}^{(i)}$	$k_{6}^{(i)}$	$k_{7}^{(i)}$	$k_{8}^{(i)}$	$k_{9}^{(i)}$	$k_{10}^{(i)}$
11	-340	-738	350	-2	-1592	758	-4	-360	2	0
12	4	0	10	-4	-36	42	-12	-24	4	0
13	152	448	-182	-10	1320	-538	-30	212	10	0
14	-11136	-33500	11148	-30	-100776	33536	-90	-11160	30	0
15	-32	-52	18	-22	-24	10	-22	-4	8	-12
16	-276	-434	82	-88	-680	128	-138	-24	26	-28
17	-520	-1566	512	16	-4716	1542	48	-504	-16	0
18	-508	-1562	538	-16	-4800	1652	-48	-568	16	0
19	-20	-64	14	4	-204	46	12	-8	-4	0
20	0	-56	56	0	-4524	4576	36	-4628	-36	0
21	20	30	-10	10	40	-10	10	0	0	0
22	32	96	-64	40	288	-192	120	120	-76	48
23	0	8	0	0	20	-2	0	0	0	0
24	0	34	0	-34	236	-26	-144	0	26	52
25	92	732	-404	274	5472	-2964	2004	1596	-1078	728

Clearly, the matrices A_{11}, \ldots, A_{25} commute pairwise. It turns out that we can express $P_{i, i}(4), P_{i, j}(2), 2 \leq i<j \leq 5$, as certain products of their powers:

$$
\begin{aligned}
& A_{26}=A_{11}^{4} A_{12}^{663} A_{13}^{-539} A_{14}^{41} A_{15}^{-2990} A_{16}^{284} A_{17}^{-1062} A_{18}^{-64} A_{19}^{-130} A_{20}^{-7} A_{21}^{-2758} A_{22}^{-441} A_{23}^{-7712} A_{24}^{-410} A_{25}^{20}=P_{2,2}(4) \text {, } \\
& A_{27}=A_{11}^{-223} A_{12}^{-1296} A_{13}^{-439} A_{14}^{273} A_{15}^{1344} A_{16}^{-754} A_{17}^{-2481} A_{18}^{-3281} A_{19}^{-115} A_{20}^{16} A_{21}^{-4816} A_{22}^{388} A_{23}^{4726} A_{24}^{176} A_{25}^{-45}=P_{2,3}(2) \text {, } \\
& A_{28}=A_{11}^{-193} A_{12}^{-544} A_{13}^{-422} A_{14}^{430} A_{15}^{-526} A_{16}^{86} A_{17}^{-6663} A_{18}^{-2402} A_{19}^{-2032} A_{20}^{5} A_{21}^{2806} A_{22}^{365} A_{23}^{4126} A_{24}^{-818} A_{25}^{29}=P_{2,4}(2) \text {, } \\
& A_{29}=A_{11}^{9} A_{12}^{726} A_{13}^{84} A_{14}^{107} A_{15}^{-1073} A_{16}^{478} A_{17}^{-2505} A_{18}^{295} A_{19}^{-1555} A_{20}^{-6} A_{21}^{4432} A_{22}^{3} A_{23}^{-153} A_{24}^{-595} A_{25}^{43}=P_{2,5}(2) \text {, } \\
& A_{30}=A_{11}^{-165} A_{12}^{-1434} A_{13}^{-605} A_{14}^{287} A_{15}^{-564} A_{16}^{-147} A_{17}^{-4236} A_{18}^{-1920} A_{19}^{-842} A_{20}^{6} A_{21}^{-1107} A_{22}^{186} A_{23}^{1502} A_{24}^{-423} A_{25}^{3}=P_{3,3}(4) \text {, } \\
& A_{31}=A_{11}^{-288} A_{12}^{-1498} A_{13}^{-1044} A_{14}^{424} A_{15}^{-1500} A_{16}^{-523} A_{17}^{-5165} A_{18}^{-3976} A_{19}^{-1498} A_{20}^{12} A_{21}^{-7035} A_{22}^{101} A_{23}^{-1052} A_{24}^{-413} A_{25}^{-22}=P_{3,4}(2) \text {, } \\
& A_{32}=A_{11}^{-156} A_{12}^{-858} A_{13}^{189} A_{14}^{144} A_{15}^{2868} A_{16}^{-755} A_{17}^{-402} A_{18}^{-2403} A_{19}^{-604} A_{20}^{16} A_{21}^{-2281} A_{22}^{529} A_{23}^{7875} A_{24}^{453} A_{25}^{-49}=P_{3,5}(2) \text {, } \\
& A_{33}=A_{11}^{-130} A_{12}^{-333} A_{13}^{-138} A_{14}^{66} A_{15}^{1249} A_{16}^{-787} A_{17}^{1004} A_{18}^{-2361} A_{19}^{196} A_{20}^{13} A_{21}^{-6846} A_{22}^{150} A_{23}^{1666} A_{24}^{552} A_{25}^{-59}=P_{4,4}(4) \text {, } \\
& A_{34}=A_{11}^{-193} A_{12}^{-1167} A_{13}^{-919} A_{14}^{282} A_{15}^{-2016} A_{16}^{-287} A_{17}^{-3592} A_{18}^{-2583} A_{19}^{-1075} A_{20}^{6} A_{21}^{-6106} A_{22}^{-94} A_{23}^{-3519} A_{24}^{-379} A_{25}^{-11}=P_{4,5}(2) \text {, } \\
& A_{35}=A_{11}^{-45} A_{12}^{321} A_{13}^{570} A_{14}^{28} A_{15}^{3182} A_{16}^{-439} A_{17}^{713} A_{18}^{-1022} A_{19}^{116} A_{20}^{10} A_{21}^{1505} A_{22}^{494} A_{23}^{8278} A_{24}^{462} A_{25}^{-30}=P_{5,5}(4) \text {. }
\end{aligned}
$$

To complete the proof of Lemma 3.3 it remains to show that $P_{i, i}(2) \in\langle x, y\rangle$ for $1 \leq i \leq 5$. For this purpose let us define the following matrices:

$$
\begin{aligned}
g_{23} & =y x y\left((x y)^{4}\left(x y^{2}\right)^{2}\right)^{2}, \\
g_{24} & =\left(x y x y^{2}\right)^{3}(x y)^{2}\left(x y x y^{2}\right)^{2}(x y)^{3} x y^{2}(x y)^{2} x, \\
g_{25} & =\left(x y x y^{2}\right)^{3}, \\
C_{3} & =(x y)^{3}\left(x y x y^{2}\right)^{2},
\end{aligned}
$$

and set

$$
\begin{aligned}
& A_{36}=\left(C_{3} g_{24}\right)^{4} A_{8}^{-1} A_{9}^{-1} A_{27}^{2} A_{28}^{-1} A_{30}^{4} A_{31}^{-3} A_{33}=P_{1,1}(2) P_{4,4}(2), \\
& A_{37}=A_{36}^{-1}\left(C_{3} g_{23}\right)^{20} A_{4}^{8} A_{7}^{15} A_{8}^{60} A_{9}^{15} A_{10}^{-15} A_{26}^{8} A_{27}^{6} A_{28}^{-15} A_{29}^{15} A_{30}^{120} A_{31}^{-60} A_{32}^{60} A_{33}^{8} A_{34}^{-15} A_{35}^{8}=P_{2,2}(2) P_{5,5}(2), \\
& A_{38}=\left(A_{37} g_{25}^{-1}\right)^{2} A_{8}^{-2} A_{9}^{-1} A_{26}^{-1} A_{27}^{-2} A_{30}^{-2} A_{35}^{-1}=P_{1,1}(2), \\
& A_{39}=\left(A_{36} g_{25}^{-1}\right)^{2} A_{7}^{-1} A_{8}^{-4} A_{10} A_{30}^{-8} A_{31}^{4} A_{32}^{-4} A_{33}^{-1} A_{34} A_{38}^{-3}=P_{5,5}(2), \\
& A_{40}=A_{38}^{-1} A_{36}=P_{4,4}(2), \\
& A_{41}=A_{39}^{-1} A_{37}=P_{2,2}(2), \\
& A_{42}=\left(g_{2} \times g_{4} A_{41}^{-1}\right)^{-2} A_{8}^{-9} A_{9}^{-6} A_{27}^{-6} A_{30}^{-4} A_{38}^{-9} A_{41}^{-5}=P_{3,3}(2) .
\end{aligned}
$$

The last five entries complete the proof.

Lemma 3.4.

We have $R_{1, i}(1), P_{3,5}(1), P_{1, j}(1) \in\langle x, y\rangle$ for $2 \leq i \leq 5,1 \leq j \leq 5$.

Proof. Let us define

$$
\begin{aligned}
& g_{26}=y(x y)^{2}\left(x y x y^{2}\right)^{5}(x y)^{3}\left(x y x y^{2}\right)^{2}, \\
& g_{27}=y\left(x y^{2} x y x y^{2}\right)^{2} x y\left(x y x y^{2}\right)^{2}, \\
& g_{28}=(x y)^{2}\left(x y^{2}\right)^{2}\left(x y x y^{2}\right)^{2}\left(x y^{2}\right)^{3} x, \\
& g_{29}=\left(x y x y^{2}\right)^{3}(x y)^{2}\left(x y^{2}\right)^{2}\left(x y x y^{2}\right)^{2} x y^{2} x y\left(x y x y^{2}\right)^{2},
\end{aligned}
$$

and consider

$$
\begin{aligned}
D_{9} & =\left(A_{27} g_{26}^{-1} y x y^{2} g_{5}\right)^{-2} A_{8} A_{27} A_{31}^{-1} A_{32}^{2}=R_{3,5}(2), \\
D_{10} & =\left(g_{26} A_{27}^{-1}\right)^{2} A_{8}^{-2} A_{27} A_{31}^{2} A_{42}^{-10}=R_{3,4}(2), \\
D_{11} & =\left(A_{31} x\right)^{-2} A_{27} A_{31} A_{32}^{-1} A_{42}^{-2}=R_{3,2}(2), \\
D_{12} & =\left(A_{31} g_{5}^{-1} g_{25}^{-1}\right)^{2} D_{9} A_{27} A_{31}^{-2} A_{32}^{-2} A_{42}^{2}=R_{3,1}(2), \\
D_{13} & =\left(g_{2} x g_{4} C_{1}\right)^{2} D_{4}^{3} D_{10}^{2} C_{1}^{-1} A_{8}^{72} A_{9}^{31} A_{10}^{-6} A_{27}^{26} A_{28}^{-4} A_{31}^{-4} A_{38}^{72} A_{41}^{-12} A_{42}^{64}=R_{2,4}(-4), \\
D_{14} & =\left(A_{27} g_{27}^{-1}\right)^{2} A_{27}^{-2} A_{28}^{2} A_{29}^{2} A_{41}^{-6}=R_{2,4}(2) R_{2,5}(2), \\
D_{15} & =g_{28}^{-1} D_{14} g_{28} \cdot D_{6}^{-6} D_{9}^{-4} D_{13}^{-1} D_{14}^{-2} A_{7}^{-12} A_{8}^{-80} A_{9}^{-33} A_{10}^{12} A_{27}^{6} A_{28}^{6} A_{29}^{-6} A_{31}^{8} A_{32}^{-8} A_{38}^{-204} A_{41}^{18} A_{42}^{-16}=R_{2,5}(2)
\end{aligned}
$$

Finally, we can obtain the following matrices:

$$
\begin{aligned}
& C_{4}=\left(y x y^{2} x y\left(x y^{2}\right)^{2}(x y)^{2}\left(x y^{2}\right)^{2}(x y)^{5}\left(x y x y^{2}\right)^{2} x\right)^{15}, \\
& C_{5}=C_{4} D_{6}^{2} D_{9}^{4} D_{13} D_{14}^{2} A_{7}^{-4} A_{8}^{39} A_{9}^{22} A_{10}^{-6} A_{27}^{39} A_{28}^{-6} A_{29}^{-4} A_{31}^{-16} A_{32}^{-5} A_{34} A_{38}^{22} A_{40}^{6} A_{41}^{22} A_{42}^{70} .
\end{aligned}
$$

The advantage of C_{4} and C_{5} is that they have shape (3) and some of their non-diagonal entries are odd. Moreover, C_{5} will help us to construct the first matrix of shape (1) with the block L containing only ones and zeros, namely

$$
A_{43}=\left(g_{2} \times g_{4} C_{5}^{-1}\right)^{-2} D_{6}^{-1} D_{9}^{-1} D_{15}^{-1} A_{7}^{-2} A_{8}^{-7} A_{9}^{-6} A_{10}^{4} A_{27}^{-12} A_{28}^{7} A_{29}^{-4} A_{31}^{13} A_{32}^{-8} A_{34}^{2} A_{38}^{-6} A_{40}^{-5} A_{41}^{-8} A_{42}^{-21}
$$

Now let us set

$$
\begin{aligned}
& C_{6}=\left(g_{3}^{-1} g_{6}\right)^{-1} A_{43} g_{3}^{-1} g_{6} \cdot D_{10}^{2} D_{12} D_{14} D_{15}^{-1} A_{8}^{6} A_{9}^{3} A_{27}^{7} A_{28}^{-1} A_{31}^{-3} A_{41}^{7} A_{42}^{2}=R_{2,1}(-1) P_{2,2}(1) P_{2,4}(1), \\
& C_{7}=\left(g_{25} g_{4}^{-1} x g_{2}^{-1}\right)^{-1} C_{6} g_{25} g_{4}^{-1} x g_{2}^{-1} \cdot D_{9}^{2} D_{10}^{2} D_{11} A_{8}^{6} A_{27}^{3} A_{31}^{-5} A_{32}^{-1} A_{42}^{34}=R_{3,1}(1) R_{3,2}(1) R_{3,4}(1) P_{3,3}(1) P_{3,5}(1), \\
& C_{8}=\left(g_{26} g_{4}^{-1}\right)^{-1} C_{6} g_{26} g_{4}^{-1} \cdot D_{9}^{-3} D_{10} D_{11} D_{12}^{2} A_{8}^{-1} A_{27}^{-3} A_{31}^{2} A_{32}^{4} A_{42}^{36}=R_{3,1}(1) R_{3,2}(1) P_{1,3}(1) P_{2,3}(1) P_{3,3}(-1), \\
& C_{9}=\left(g_{29} g_{3}^{-1}\right)^{-1} C_{6} g_{29} g_{3}^{-1} \cdot D_{9}^{-3} D_{11}^{3} D_{12}^{-1} A_{27}^{-3} A_{31}^{-1} A_{32}^{6} A_{42}^{75}=R_{3,2}(1) R_{3,5}(1) P_{2,3}(1) P_{3,4}(1), \\
& C_{10}=\left(g_{7} g_{2}\right)^{-1} C_{6} g_{7} g_{2} \cdot D_{9}^{2} D_{11}^{-2} D_{12}^{2} A_{27}^{5} A_{31} A_{32}^{-3} A_{42}^{28}=R_{3,1}(1) R_{3,2}(1) R_{3,5}(1) P_{3,3}(1), \\
& C_{11}=\left(g_{3}^{-1} g_{26}\right)^{-1} C_{6} g_{3}^{-1} g_{26} \cdot D_{9}^{5} D_{10}^{3} D_{11} D_{12}^{-1} A_{8}^{6} A_{27}^{4} A_{31}^{-8} A_{32}^{-5} A_{42}^{138}=R_{3,2}(1) R_{3,4}(1) R_{3,5}(1) P_{3,4}(1), \\
& C_{12}=\left(g_{27} g_{3}^{-1}\right)^{-1} C_{6} g_{27} g_{3}^{-1} \cdot D_{9}^{-1} D_{10}^{2} D_{11}^{2} A_{8}^{4} A_{27}^{-1} A_{31}^{-4} A_{32}^{3} A_{42}^{42}=R_{3,1}(1) R_{3,2}(1) R_{3,4}(1) R_{3,5}(1) P_{2,3}(1) P_{3,3}(-1) P_{3,5}(1) .
\end{aligned}
$$

Using them we are now able to prove some of the statements of the lemma. Namely, take

$$
\begin{aligned}
& A_{44}=C_{7} C_{8}^{-1} C_{10} C_{12}^{-1} A_{8} A_{27} A_{42}^{2}=P_{1,3}(1), \\
& A_{45}=C_{7} C_{8}^{-1} C_{9} C_{11}^{-1} A_{44}=P_{3,5}(1), \\
& A_{46}=\left(g_{2} \times g_{4}\right)^{-1} A_{44} g_{2} \times g_{4} \cdot A_{8}^{-1} A_{38}^{-1}=P_{1,2}(1), \\
& A_{47}=\left(g_{2} \times g_{5} x\right)^{-1} A_{44} g_{2} \times g_{5} x \cdot D_{4}^{-1} D_{6}^{-1} A_{7}^{2} A_{10}^{2} A_{38}^{3} A_{44}^{-3} A_{46}^{-1}=P_{1,5}(1) .
\end{aligned}
$$

Futhermore, let us consider

$$
\begin{aligned}
& g_{30}=\left(x y^{2}\right)^{3}(x y)^{2}\left(x y^{2}\right)^{2} x y\left(x y^{2}\right)^{7}(x y)^{3} x \\
& g_{31}=\left(\left(x y^{2}\right)^{2} x y\right)^{2}(x y)^{2} \\
& g_{32}=y\left(x y^{2}\right)^{2}(x y)^{2}\left(x y^{2}\right)^{4} x y x y^{2}
\end{aligned}
$$

Now we finish the proof by constructing the following matrices:

$$
\begin{aligned}
& D_{16}=\left(g_{5} g_{4}\right)^{-1} A_{44} g_{5} g_{4} \cdot A_{10} A_{38}^{-3} A_{44}^{-3}=R_{1,4}(1), \\
& A_{48}=\left(g_{2} \times g_{31}\right)^{-1} A_{44} g_{2} x g_{31} \cdot g_{30}^{-1} A_{47}^{-1} g_{30} \cdot D_{6}^{7} D_{7}^{-1} D_{16}^{5} A_{10}^{-6} A_{38}^{180} A_{44}^{-9} A_{46}^{6} A_{47}^{-20}=P_{1,4}(1), \\
& D_{17}=g_{32}^{-1} D_{16} g_{32} \cdot D_{6}^{-1} D_{7}^{2} D_{8}^{-2} D_{16}^{-11} A_{8}^{-4} A_{9}^{-4} A_{38}^{63} A_{47}^{11} A_{48}^{11}=R_{1,5}(1), \\
& D_{18}=\left(g_{31}^{-1} g_{4} \times g_{2} \times g_{4}\right)^{-1} A_{47} g_{31}^{-1} g_{4} x g_{2} \times g_{4} \cdot D_{6} D_{7}^{2} D_{16}^{5} D_{17}^{-1} A_{38}^{31} A_{44}^{14} A_{47}^{-3} A_{48}^{-9}=R_{1,2}(1), \\
& A_{49}=\left(g_{31}^{-1} g_{4} x\right)^{-1} A_{44} g_{31}^{-1} g_{4} x \cdot D_{6}^{2} D_{16} D_{17}^{-1} A_{7}^{-2} A_{9} A_{10}^{-1} A_{38}^{10} A_{48}^{-1}=P_{1,1}(1), \\
& D_{19}=g_{30}^{-1} D_{18} g_{30} \cdot D_{8}^{5} D_{16}^{14} D_{17}^{-2} D_{18}^{-11} A_{44}^{12}{ }_{46}^{19} A_{47}^{-14} A_{48}^{-9} A_{49}^{169}=R_{1,3}(1) .
\end{aligned}
$$

Lemma 3.5.

We have $P_{i, j}(1) \in\langle x, y\rangle$ for $2 \leq i \leq j \leq 5$.

Proof. We argue as at the beginning of the proof of Lemma 3.3, but now we consider $v \in\left(\frac{1}{2} \mathbb{Z}\right)^{10}$ of shape (8) with $a_{i}, b_{j} \in \mathbb{Z}$, i.e. without any assumptions on their parity (taking u as in (7) we always have that $u v^{\top} J+v u^{\top} J$ is an integral matrix). Again, the matrix S defined by (6) can be represented in the form (9), where now the product is in $\langle x, y\rangle$ by Lemma 3.4. In other words, S is a product of suitable powers of $D_{18}, D_{19}, D_{16}, D_{17}, A_{46}, A_{44}, A_{48}$, and A_{47}. Set

$$
\begin{aligned}
& g_{33}=y^{2} x y^{2}(x y)^{2}\left(x y^{2}\right)^{5} x y x y^{2}(x y)^{4}\left(x y^{2}\right)^{4}\left(x y x y^{2}\right)^{3}\left(x y^{2}\right)^{2}(x y)^{4}\left(x y^{2}\right)^{2} x, \\
& g_{34}=x y\left((x y)^{7} x y^{2}\right)^{2}(x y)^{5}\left(x y^{2}\right)^{2} x .
\end{aligned}
$$

It is easy to check that the last five entries in the first column of g_{33}^{-1}, g_{34}^{-1} as well as $\left(g_{16} g_{2} x g_{4}\right)^{-1}$ vanish. Recall that the same property holds for $g_{10}^{-1}, \ldots, g_{22}^{-1}$ constructed in the proof of Lemma 3.3. Hence, for these matrices g we have $g^{-1} u \in U_{1}$. Finding suitable vectors v and reasoning in the same way as in the proof of Lemma 3.3, we define the following matrices:

$$
\begin{aligned}
& A_{50}=g_{10}^{-1} D_{18}^{13} A_{44}^{-1} A_{46}^{-6} A_{47}^{3} A_{48}^{3} g_{10} \cdot A_{44}^{396} A_{46}^{169} A_{47}^{2} A_{48}^{-179} A_{49}^{308}, \\
& A_{51}=g_{12}^{-1} D_{18}^{-5} A_{44}^{-22} A_{46}^{-12} A_{47}^{7} A_{48}^{-15} g_{12} \cdot A_{44}^{-92} A_{46}^{-32} A_{47}^{5} A_{48}^{47} A_{49}^{-48}, \\
& A_{52}=g_{14}^{-1} D_{18} A_{44}^{2} A_{46}^{-4} A_{47} A_{48}^{-2} g_{14} \cdot A_{44}^{29} A_{46}^{17} A_{47}^{12} A_{48}^{-10} A_{49}^{22}, \\
& A_{53}=g_{16}^{-1} D_{18}^{-12} A_{44}^{-4} A_{46}^{11} A_{47} g_{16} \cdot A_{44}^{-471} A_{46}^{-156} A_{47}^{8} A_{48}^{152} A_{49}^{184}, \\
& A_{54}=\left(g_{16} g_{2} \times g_{4}\right)^{-1} D_{18}^{-12} A_{44}^{-4} A_{46}^{11} A_{47} g_{16} g_{2} \times g_{4} \cdot A_{44}^{445} A_{46}^{142} A_{47}^{8} A_{48}^{-157} A_{49}^{162}, \\
& A_{55}=g_{22}^{-1} D_{18}^{11} A_{44}^{16} A_{46}^{5} A_{47}^{11} A_{48}^{-18} g_{22} \cdot A_{44}^{-324} A_{46}^{-24} A_{47}^{-138} A_{48}^{200} A_{49}^{-132}, \\
& A_{56}=g_{33}^{-1} D_{18}^{-19} A_{44}^{195} A_{46}^{73} A_{47}^{19} A_{48}^{-43} g_{33} \cdot A_{44}^{3964} A_{46}^{588} A_{47}^{3983} A_{48}^{-7963} A_{49}^{11901}, \\
& A_{57}=g_{34}^{-1} D_{18}^{-1} A_{44}^{12} A_{46}^{5} A_{47}^{3} A_{48}^{-2} g_{34} \cdot A_{44}^{-85} A_{46}^{-28} A_{47}^{2} A_{48}^{25} A_{49}^{35} .
\end{aligned}
$$

Clearly, the matrices A_{51}, \ldots, A_{57} can be written in the form (10). The coefficients $k_{j}^{(i)}$ are presented in Table 2. Moreover, we can simplify the result by making the reduction modulo 2 (the possibility of such simplification follows from Lemmas 3.1 and 3.3; moreover, using $A_{45}=P_{3,5}(1)$ it is possible to make $k_{7}^{(i)}$ equal 0):

$$
\begin{aligned}
& A_{58}=A_{50} A_{27}^{107} A_{28}^{-48} A_{29} A_{31}^{-111} A_{40}^{51} A_{41}^{46} A_{42}^{242} A_{45}^{2}, \\
& A_{59}=A_{51} A_{27}^{-22} A_{28}^{16} A_{29}^{3} A_{31}^{45} A_{34}^{-2} A_{40}^{-23} A_{41}^{-8} A_{42}^{-60} A_{45}^{15}, \\
& A_{60}=A_{52} A_{27}^{7} A_{28}^{-2} A_{29}^{4} A_{31}^{4} A_{39} A_{40}^{-1} A_{41}^{6} A_{42}^{-12} A_{45}^{-1}, \\
& A_{61}=A_{53} A_{27}^{194} A_{28}^{-62} A_{29}^{-4} A_{31}^{-187} A_{34}^{4} A_{40}^{60} A_{41}^{64} A_{42}^{585} A_{45}^{-24}, \\
& A_{62}=A_{54} A_{27}^{193} A_{28}^{-68} A_{29}^{4} A_{31}^{-215} A_{34}^{-4} A_{40}^{76} A_{41}^{61} A_{42}^{606} A_{45}^{24}, \\
& A_{63}=A_{55} A_{27}^{-18} A_{28}^{19} A_{29}^{-13} A_{31}^{246} A_{34}^{105} A_{39}^{-72} A_{40}^{-151} A_{41}^{5} A_{42}^{-378} A_{45}^{-342}, \\
& A_{64}=A_{56} A_{27}^{2636} A_{28}^{-5292} A_{29}^{2647} A_{31}^{-13273} A_{34}^{-1332} A_{39}^{667} A_{40}^{2664} A_{41}^{10512} A_{42}^{66130} A_{45}^{13278}, \\
& A_{65}=A_{57} A_{27}^{32} A_{28}^{-9} A_{29}^{-1} A_{31}^{-27} A_{34} A_{40}^{8} A_{41}^{11} A_{42}^{98} A_{45}^{-6} .
\end{aligned}
$$

Table 2. The coefficients $k_{j}^{(i)}$

i	$k_{1}^{(i)}$	$k_{2}^{(i)}$	$k_{3}^{(i)}$	$k_{4}^{(i)}$	$k_{5}^{(i)}$	$k_{6}^{(i)}$	$k_{7}^{(i)}$	$k_{8}^{(i)}$	$k_{9}^{(i)}$	$k_{10}^{(i)}$
50	-92	-213	97	-1	-484	223	-2	-102	1	0
51	16	44	-31	-5	120	-89	-15	46	5	0
52	-12	-14	5	-7	24	-7	1	2	0	-2
53	-128	-387	124	8	-1170	375	24	-120	-8	0
54	-122	-385	137	-8	-1212	430	-24	-152	8	0
55	-9	36	-37	27	756	-492	342	303	-209	144
56	-21024	-52732	10584	-5294	-132260	26546	-13278	-5328	2665	-1333
57	-21	-64	18	2	-195	55	6	-15	-2	0

The matrices A_{58}, \ldots, A_{65} satisfy (10) with $k_{j}^{(i)} \in\{0,1\}$. The coefficients $k_{j}^{(i)}$ are listed in Table 3.

Table 3. The coefficients $k_{j}^{(i)}$

i	$k_{1}^{(i)}$	$k_{2}^{(i)}$	$k_{3}^{(i)}$	$k_{4}^{(i)}$	$k_{5}^{(i)}$	$k_{6}^{(i)}$	$k_{7}^{(i)}$	$k_{8}^{(i)}$	$k_{9}^{(i)}$	$k_{10}^{(i)}$
58	0	1	1	1	0	1	0	0	1	0
59	0	0	1	1	0	1	0	0	1	0
60	0	0	1	1	0	1	0	0	0	0
61	0	1	0	0	0	1	0	0	0	0
62	0	1	1	0	0	0	0	0	0	0
63	1	0	1	1	0	0	0	1	1	0
64	0	0	0	0	0	0	0	0	1	1
65	1	0	0	0	1	1	0	1	0	0

Recall that we already have $P_{3,5}(1) \in\langle x, y\rangle$ by Lemma 3.4. To complete the proof it is enough to construct the following matrices:

$$
\begin{aligned}
& A_{66}=A_{58} A_{59}^{-1}=P_{2,3}(1) \\
& A_{67}=A_{59} A_{60}^{-1}=P_{4,5}(1) \\
& A_{68}=A_{61} A_{66}^{-1}=P_{3,4}(1) \\
& A_{69}=A_{62} A_{66}^{-1}=P_{2,4}(1) \\
& A_{70}=A_{59} A_{67}^{-1} A_{68}^{-1} A_{69}^{-1}=P_{2,5}(1), \\
& A_{71}=A_{64} A_{67}^{-1}=P_{5,5}(1), \\
& A_{72}=A_{63} A_{67}^{-1} A_{69}^{-1} A_{70}^{-1}=P_{2,2}(1) P_{4,4}(1), \\
& A_{73}=A_{65} A_{68}^{-1} A_{72}^{-1}=P_{3,3}(1), \\
& A_{74}=\left(g_{2} \times g_{4}\right)^{-1} A_{72} g_{2} \times g_{4} \cdot A_{41}^{-4} A_{44}^{-9} A_{46}^{-6} A_{49}^{-9} A_{66}^{-18} A_{68}^{6} A_{69}^{2} A_{73}^{-45}=P_{4,4}(1), \\
& A_{75}=A_{72} A_{74}^{-1}=P_{2,2}(1)
\end{aligned}
$$

The statements of Lemma 3.4 and Lemma 3.5 show us that $P_{i, j}(1) \in\langle x, y\rangle, 1 \leq i \leq j \leq 5$. Using this fact we can prove that $Q_{i, j}(1), 1 \leq i \leq j \leq 5$, are also in $\langle x, y\rangle$.

Lemma 3.6.

For $1 \leq i \leq j \leq 5$ we have $Q_{i, j}(1) \in\langle x, y\rangle$.

Proof. Observe that

$$
S=I_{10} \pm u u^{T} J \in \begin{cases}\left\langle\mathrm{P}_{i, j}(1): 1 \leq i \leq j \leq 5\right\rangle \subset\langle x, y\rangle & \text { if } u \in U_{1} \\ \left\langle\mathrm{Q}_{i, j}(1): 1 \leq i \leq j \leq 5\right\rangle & \text { if } u \in U_{2}\end{cases}
$$

Here U_{1} and U_{2} are the subsets defined in (5) and the matrix J is defined at the beginning of Section 2. Also it is clear that

$$
g^{-1} S g=g^{-1}\left(I_{10} \pm u u^{\top} \jmath\right) g=I_{10} \pm\left(g^{-1} u\right)\left(g^{-1} u\right)^{\top} g^{\top} J g=I_{10} \pm\left(g^{-1} u\right)\left(g^{-1} u\right)^{\top} J
$$

provided $g \in \mathrm{Sp}_{10}(\mathbb{Z})$. Thus, if we take $g \in\langle x, y\rangle \subseteq \mathrm{Sp}_{10}(\mathbb{Z})$ and $u \in U_{1}$ such that $g^{-1} u \in U_{2}$, then the above matrix $g^{-1} S g$ belongs to $\left\langle Q_{i, j}(1): 1 \leq i \leq j \leq 5\right\rangle \cap\langle x, y\rangle$. Set

$$
\begin{aligned}
& g_{35}=y(x y)^{2}\left(x y^{2}(x y)^{3}\right)^{2}(x y)^{4}\left(x y^{2}\right)^{2} x y x, \\
& g_{36}=x y\left(x y^{2}\right)^{2}(x y)^{3}\left(x y^{2}\right)^{2}, \\
& g_{37}=y(x y)^{2} x y^{2}(x y)^{3}\left(x y^{2}\right)^{2} x y x, \\
& g_{38}=(x y)^{5}\left(x y^{2}\right)^{2}(x y)^{4}\left(x y^{2}\right)^{5}(x y)^{3}, \\
& g_{39}=y^{2} x y^{2}(x y)^{2} x, \\
& g_{40}=y\left(x y x y^{2}\right)^{2}\left(x y^{2}\right)^{2} x y, \\
& g_{41}=y^{2} x y x y^{2} x y\left(x y^{2}\right)^{4} x y x, \\
& g_{42}=y x y^{2} x y\left(x y^{2}\right)^{2} x y\left(x y^{2}\right)^{4}(x y)^{3}\left(x y^{2}\right)^{2}(x y)^{2}\left(x y^{2}\right)^{3} x y x, \\
& g_{43}=y\left(\left(x y^{2}\right)^{3} x y\right)^{2} x y^{2}, \\
& g_{44}=\left(x y^{2}\right)^{5} x y x y^{2} x, \\
& g_{45}=\left(x y x y^{2}\right)^{2} x y\left(x y x y^{2}\right)^{3} x y\left((x y)^{2} x y^{2}\right)^{2}\left(x y x y^{2}\right)^{3} y, \\
& g_{46}=y\left(x y^{2}\right)^{2}\left(x y x y^{2}\right)^{2}(x y)^{4} x, \\
& g_{47}=\left(x y^{2}\right)^{3}\left(x y x y^{2}\right)^{3} x, \\
& g_{48}=y(x y)^{4}\left(x y x y^{2}\right)^{3}\left(x y^{2}\right)^{2}, \\
& g_{49}=x y x y^{2}(x y)^{7} x y^{2}(x y)^{2} x, \\
& g_{50}=y^{2}\left(x y^{2}\right)^{3}, \\
& g_{51}=\left(x y^{2} x y\right)^{3} x y x y^{2},
\end{aligned}
$$

and also

$$
\begin{aligned}
& u_{1}=(1,1,2,-1,0,0,0,0,0,0)^{T}, \\
& u_{2}=(-1,1,3,-1,0,0,0,0,0,0)^{T} \\
& u_{3}=(-2,-7,-20,1,-5,0,0,0,0,0)^{T} \\
& u_{4}=(-10,-29,-64,3,-4,0,0,0,0,0)^{T}, \\
& u_{5}=(-4,0,-2,3,-1,0,0,0,0,0)^{T}, \\
& u_{6}=(-7,-19,-31,5,-2,0,0,0,0,0)^{T}, \\
& u_{7}=(-3,-3,-11,4,-3,0,0,0,0,0)^{T}, \\
& u_{8}=(-6,-3,13,-4,-1,0,0,0,0,0)^{T} \\
& u_{9}=(-6,-6,-19,7,-2,0,0,0,0,0)^{T} \\
& u_{10}=(1,-3,-8,2,-1,0,0,0,0,0)^{T}, \\
& u_{11}=(0,-2,-6,1,-1,0,0,0,0,0)^{T}, \\
& u_{12}=(-3,-2,-4,2,0,0,0,0,0,0)^{T}, \\
& u_{13}=(-5,0,-2,3,-2,0,0,0,0,0)^{T},
\end{aligned}
$$

$$
\begin{aligned}
& u_{14}=(2,-2,-5,0,-1,0,0,0,0,0)^{T} \\
& u_{15}=(-8,-11,-29,7,-2,0,0,0,0,0)^{T} \\
& u_{16}=(-1,-3,-11,3,-2,0,0,0,0,0)^{T}, \\
& u_{17}=(-1,0,-1,1,-1,0,0,0,0,0)^{T} .
\end{aligned}
$$

Finally, let us consider

$$
B_{i}= \begin{cases}g_{34+i}^{-1}\left(\Lambda_{10}+u_{i} u_{i}^{T} J\right) g_{34+i} & \text { if } 1 \leq i \leq 15 \\ g_{34+i}^{-1}\left(I_{10}-u_{i} u_{i}^{T} J\right) g_{34+i} & \text { if } i=16,17\end{cases}
$$

which belong to $\left\langle Q_{i, j}(1): 1 \leq i \leq j \leq 5\right\rangle \cap\langle x, y\rangle$. Clearly, B_{1}, \ldots, B_{17} commute pairwise. It turns out that they generate the same subgroup of $\mathrm{Sp}_{10}(\mathbb{Z})$ as $Q_{i, j}(1)$ do. Namely, we can express the matrices $Q_{i, j}(1)$ as the following products of B_{1}, \ldots, B_{17} :

$$
\begin{aligned}
& Q_{1,1}(1)=B_{1}^{-97} B_{2}^{-105} B_{3}^{12} B_{4}^{2} B_{5}^{14} B_{6}^{-21} B_{7}^{95} B_{8}^{17} B_{9}^{2} B_{10}^{137} B_{11}^{10} B_{12}^{-29} B_{13}^{-10} B_{14}^{-277} B_{15}^{-19} B_{10}^{-40} B_{17}^{65}, \\
& Q_{1,2}(1)=B_{1}^{34} B_{2}^{42} B_{3}^{6} B_{4} B_{5}^{-9} B_{6}^{-10} B_{7}^{30} B_{8}^{-2} B_{9}^{-5} B_{10}^{56} B_{11}^{-15} B_{12}^{36} B_{13}^{-14} B_{14}^{-122} B_{15}^{-6} B_{10}^{-48} B_{17}^{16}, \\
& Q_{1,3}(1)=B_{1}^{-160} B_{2}^{-221} B_{3}^{-20} B_{4}^{-3} B_{5}^{26} B_{6}^{34} B_{7}^{-93} B_{8}^{8} B_{9}^{22} B_{10}^{-180} B_{11}^{63} B_{12}^{-122} B_{13}^{54} B_{14}^{396} B_{15}^{19} B_{16}^{182} B_{17}^{-45}, \\
& Q_{1,4}(1)=B_{1}^{-111} B_{2}^{-140} B_{3}^{-2} B_{5}^{16} B_{6}^{3} B_{7}^{11} B_{8}^{11} B_{9}^{10} B_{10}^{-5} B_{11}^{30} B_{12}^{-59} B_{13}^{16} B_{14}^{23} B_{15}^{-2} B_{16}^{52} B_{17}^{15}, \\
& Q_{1,5}^{14}(1)=B_{1}^{14} B_{2}^{18} B_{3}^{-6} B_{4}^{-1} B_{5}^{2} B_{6}^{10} B_{7}^{-39} B_{8}^{-3} B_{9}^{2} B_{10}^{-65} B_{11}^{3} B_{12}^{-14} B_{13}^{8} B_{14}^{34} B_{15}^{8} B_{16}^{30} B_{17}^{-25}, \\
& Q_{2,2}(1)=B_{17}, \\
& Q_{2,3}(1)=B_{1}^{85} B_{2}^{121} B_{3}^{13} B_{4}^{2} B_{5}^{-17} B_{6}^{-22} B_{7}^{63} B_{8}^{-4} B_{9}^{-13} B_{10}^{120} B_{11}^{-36} B_{12}^{75} B_{13}^{-32} B_{14}^{-262} B_{15}^{-13} B_{16}^{-111} B_{17}^{31}, \\
& Q_{2,4}(1)=B_{1}^{107} B_{2}^{163} B_{3}^{15} B_{4}^{2} B_{5}^{-11} B_{6}^{-26} B_{7}^{74} B_{8}^{-2} B_{9}^{-16} B_{10}^{136} B_{11}^{-45} B_{12}^{69} B_{13}^{-40} B_{14}^{-298} B_{15}^{-15} B_{16}^{-135} B_{17}^{37}, \\
& Q_{2,5}(1)=B_{1}^{49} B_{2}^{45} B_{3}^{-12} B_{4}^{-2} B_{5}^{-7} B_{6}^{21} B_{7}^{-86} B_{8}^{-12} B_{9} B_{10}^{-128} B_{11}^{2} B_{12}^{6} B_{13}^{16} B_{14}^{265} B_{15}^{17} B_{16}^{57} B_{17}^{-57}, \\
& Q_{3,3}(1)=B_{1}^{36} B_{2}^{21} B_{3}^{-18} B_{4}^{-3} B_{5}^{-2} B_{6}^{31} B_{7}^{-119} B_{8}^{-12} B_{9}^{6} B_{10}^{-189} B_{11}^{12} B_{12}^{-21} B_{13}^{27} B_{14}^{393} B_{15}^{24} B_{16}^{99} B_{17}^{-75}, \\
& Q_{3,4}(1)=B_{1}^{-102} B_{2}^{-125} B_{3}^{4} B_{4} B_{5}^{12} B_{6}^{-7} B_{7}^{45} B_{8}^{12} B_{9}^{6} B_{10}^{57} B_{11}^{21} B_{12}^{-37} B_{13}^{5} B_{14}^{-107} B_{15}^{-9} B_{16}^{13} B_{117}^{35}, \\
& Q_{3,5}(1)=B_{1}^{-76} B_{2}^{-119} B_{3}^{-20} B_{4}^{-3} B_{5}^{16} B_{6}^{34} B_{7}^{-108} B_{9}^{16} B_{10}^{-193} B_{11}^{42} B_{12}^{-86} B_{13}^{43} B_{14}^{414} B_{15}^{22} B_{16}^{152} B_{17}^{-60}, \\
& Q_{4,4}(1)=B_{1}^{208} B_{2}^{244} B_{3}^{-10} B_{4}^{-2} B_{5}^{-30} B_{6}^{18} B_{7}^{-106} B_{8}^{-28} B_{9}^{-12} B_{10}^{-132} B_{11}^{-40} B_{12}^{88} B_{13}^{-6} B_{14}^{254} B_{15}^{21} B_{16}^{-12} B_{17}^{-80}, \\
& Q_{4,5}(1)=B_{1}^{-86} B_{2}^{-89} B_{3}^{18} B_{4}^{3} B_{5}^{8} B_{6}^{-31} B_{7}^{129} B_{8}^{17} B_{9}^{-2} B_{10}^{197} B_{11}^{-1} B_{13}^{-21} B_{14}^{-404} B_{15}^{-26} B_{16}^{-79} B_{17}^{85}, \\
& Q_{5,5}(1)=B_{16} .
\end{aligned}
$$

Proof of Theorem 2.1. By Lemmas 3.4, 3.5 and 3.6 we already have that $P_{i, j}(1), Q_{i, j}(1) \in\langle x, y\rangle, 1 \leq i \leq j \leq 5$. Finally, we set $P_{i, j}(1)=P_{j, i}(1), Q_{i, j}(1)=Q_{j, i}(1)$ for $i>j$ and use the commutator identity

$$
R_{i, k}(1)=P_{i, j}(1) Q_{j, k}(1) P_{i, j}(-1) Q_{j, k}(-1)
$$

which is true for any triple of pairwise distinct indices $1 \leq i, j, k \leq 5$. We conclude that $R_{i, j}(1) \in\langle x, y\rangle$ for $1 \leq i \neq j \leq 5$ and hence $E \mathrm{Ep}_{10}(\mathbb{Z}) \subseteq\langle x, y\rangle$. Since $\mathrm{Sp}_{10}(\mathbb{Z})=E \mathrm{ESp}_{10}(\mathbb{Z})$ by $[3]$, this finishes the proof of Theorem 2.1.

Acknowledgements

This research was supported in part by the Russian Foundation for Basic Research (grant no. 09-01-00784-a), by the programme "Scientific Schools" (grant no. NSh-5282.2010.1) and by the programme "Modern problems of fundamental mathematics" of the Russian Academy of Sciences.

References

[1] Di Martino L., Vavilov N., (2, 3)-generation of SL(n, q). I. Cases $n=5,6,7$, Comm. Algebra, 1994, 22(4), 1321-1347
[2] Di Martino L., Vavilov N., (2, 3)-generation of SL(n,q). II. Cases $n \geq 8$, Comm. Algebra, 1996, 24(2), 487-515
[3] Hahn A.J., O'Meara O.T., The Classical Groups and K-theory, Grundlehren Math. Wiss., 291, Springer, Berlin, 1989
[4] Liebeck M.W., Shalev A., Classical groups, probabilistic methods, and the (2,3)-generation problem, Ann. of Math., 1996, 144(1), 77-125
[5] Lucchini A., Tamburini M.C., Classical groups of large rank as Hurwitz groups, J. Algebra, 1999, 219(2), 531-546
[6] Sanchini P., Tamburini M.C., Constructive (2, 3)-generation: a permutational approach, Rend. Sem. Mat. Fis. Milano, 1994, 64(1), 141-158
[7] Tamburini M.C., The (2, 3)-generation of matrix groups over the integers, In: Ischia Group Theory 2008, Proceedings of the Conference in Group Theory, Naples, April 1-4, 2008, World Scientific, Hackensack, 2009, 258-264
[8] Tamburini M.C., Generation of certain simple groups by elements of small order, Istit. Lombardo Accad. Sci. Lett. Rend. A, 1987, 121, 21-27
[9] Tamburini M.C., Wilson J.S., Gavioli N., On the (2, 3)-generation on some classical groups. I, J. Algebra, 1994, 168(1), 353-370
[10] Vasilyev V.L., Vsemirnov M.A., On (2, 3)-generation of low-dimensional symplectic groups over the integers, Comm. Algebra, 2010, 38(9), 3469-3483
[11] Vsemirnov M.A., Is the group $\operatorname{SL}(6, \mathbb{Z})(2,3)$-generated?, J. Math. Sci. (N.Y.), 2007, 140(5), 660-675
[12] Vsemirnov M.A., The group $\operatorname{GL}(6, \mathbb{Z})$ is $(2,3)$-generated, J. Group Theory, 2007, 10(4), 425-430
[13] Vsemirnov M.A., On (2, 3)-generation of matrix groups over the ring of integers, St. Petersburg Math. J., 2008, 19(6), 883-910
[14] Vsemirnov M.A., On (2,3)-generation of matrix groups over the ring of integers. II, St. Petersburg Math. J. (in press)

[^0]: * E-mail: vadim@pdmi.ras.ru
 + E-mail: vsemir@pdmi.ras.ru

