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Abstract: Let Ln, n ≥ 1, denote the sequence which counts the number of paths from the origin to the line x = n − 1
using (1, 1), (1, −1), and (1, 0) steps that never dip below the x-axis (called Motzkin left factors). The numbers Ln
count, among other things, certain restricted subsets of permutations and Catalan paths. In this paper, we provide
new combinatorial interpretations for these numbers in terms of finite set partitions. In particular, we identify four
classes of the partitions of size n, all of which have cardinality Ln and each avoiding a set of two classical patterns
of length four. We obtain a further generalization in one of the cases by considering a pair of statistics on the
partition class. In a couple of cases, to show the result, we make use of the kernel method to solve a functional
equation arising after a certain parameter has been introduced.
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1. Introduction

Let Mn be the set of all paths from (0, 0) to (n, 0) using (1, 1), (1, −1) and (1, 0) steps, which we will denote by u, d,and ` , respectively, with no steps lying below the x-axis (called Motzkin paths). The cardinality of Mn defines the
Motzkin number Mn, which has been widely studied (see, e.g., [16, A001006] and references therein). Let Ln denote theset of all paths of length n using u, d and ` steps starting from the origin and not dipping below the x-axis. Such pathsare called Motzkin left factors; see, e.g., [1, p. 111] or [9, p. 9]. Let Ln = |Ln−1| if n ≥ 1, with L0 = 1. The Ln are alsogiven by the generating function ∑

n≥0 Lnx
n = 1− 3x +√1− 2x − 3x22(1− 3x) (1)
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and satisfy the relation
Ln+1 = Mn + n−1∑

k=0 MkLn−k , n ≥ 1, (2)
with L0 = L1 = 1.Among the other lattice path interpretations of the numbers Ln is the fact that they count the symmetric Catalan pathsof semilength 2n − 1 with no peaks at even level as well as the Catalan paths of semilength n with no occurrence of
duuu. The Ln also enumerate a variety of other structures, ranging from the set of directed animals [6] of size n to thepermutations of {1, 2, . . . , n} simultaneously avoiding 321 and the barred pattern 41̄523, see [3], to the set of base 3
n-digit numbers whose digit sum is also n. See [16, A005773] for further information on these numbers. Here, we providenew combinatorial interpretations for the Ln in terms of finite set partitions, showing, in particular, that they enumeratecertain two-pattern avoidance classes.If n ≥ 1, then a partition of [n] = {1, 2, . . . , n} is any collection of non-empty, pairwise disjoint subsets, called blocks,whose union is [n]. (If n = 0, then there is a single empty partition which has no blocks.) Throughout, we will use theterm partition when referring to a partition of a set. A partition Π having exactly k blocks is also called a k-partitionand will be denoted by Π = B1/B2/ · · · /Bk , where the blocks are arranged in ascending order according to the size ofthe smallest elements. We will denote the set of k-partitions of [n] by Pn,k and the set of all partitions of [n] by Pn. Onecan represent the partition Π = B1/B2/ · · · /Bk ∈ Pn,k , equivalently, by the canonical sequential form π = π1π2 · · · πn,wherein j ∈ Bπj , 1 ≤ j ≤ n, and in such case we will write Π = π. For example, the partition Π = 1, 5, 7/2, 3/4, 8/6 ∈ P8,4has the canonical sequential form π = 12231413. Note that π = π1π2 · · · πn ∈ Pn,k is a restricted growth function from[n] to [k ] (see, e.g., [12] for details), meaning that it satisfies the following three properties: (i) π1 = 1, (ii) π is onto [k ],and (iii) πi+1 ≤ max {π1, π2, . . . , πi} + 1 for all i, 1 ≤ i ≤ n − 1. In what follows, we will represent set partitions aswords using their canonical sequential forms and consider some particular cases of the general problem of counting themembers of a partition class having various restrictions imposed on the order of the letters.A classical pattern τ is a member of [` ]m which contains all of the letters in [` ]. We say that a word σ ∈ [k ]n containsthe classical pattern τ if σ contains a subsequence isomorphic to τ. Otherwise, we say that σ avoids τ. For example,a word σ = σ1σ2 · · · σn avoids the pattern 132 if it has no subsequence σiσjσk with i < j < k and σi < σk < σj andavoids the pattern 1212 if it has no subsequence σiσjσkσ` with σi = σk < σj = σ` . The pattern avoidance questionhas been the topic of many papers in enumerative combinatorics, starting with Knuth [11] and Simion and Schmidt [15]on permutations and considered, more recently, on words, compositions, and finite set partitions. For the avoidanceproblem on partitions, we refer the reader to the papers by Klazar [10], Sagan [13], and Jelínek and Mansour [8] and tothe references therein.We will use the following notation. If {w1, w2, . . .} is a set of classical patterns, then let Pn(w1, w2, . . .) and
Pn,k (w1, w2, . . .) denote, respectively, the subsets of Pn and Pn,k which avoid all of the patterns. We will denotethe cardinalities of Pn(w1, w2, . . .) and Pn,k (w1, w2, . . .) by pn(w1, w2, . . .) and pn,k (w1, w2, . . .), respectively.In this paper, we identify four classes of partitions each avoiding a pair of classical patterns of length four and eachenumerated by the number Ln. In addition to providing new interpretations for the numbers Ln, this addresses specificcases of a general question raised by Goyt in the final section of [7] concerning the avoidance by set partitions of twoor more patterns of length four. Our main result is the following theorem which we prove in the next section as a seriesof propositions.
Theorem 1.1.
If n ≥ 0, then pn(u, v) = Ln for the following sets (u, v):

(i) (1222, 1212), (ii) (1112, 1212), (iii) (1211, 1221), (iv) (1222, 1221).
We remark that, in the first two cases, our proofs are more or less combinatorial, while, in the last two, they are algebraicand involve applications of the kernel method [2] to solve the functional equations that arise once a certain parameterhas been introduced. In addition, we prove a refinement of Theorem 1.1 as well as obtain p, q-generalizations of thenumbers Mn and Ln by considering pairs of statistics on the sets Pn(111, 1212) and Pn(1222, 1212), respectively.
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2. Proof of the main result

Theorem 1.1 will follow from combining the propositions in the sections below. We first consider the patterns {1222, 1212}and {1112, 1212}.
2.1. The cases {1222, 1212} and {1112, 1212}
Throughout, we will denote the sets Pn(1222, 1212) and Pn(1112, 1212) by An and Bn, respectively. Let Rn denote theset Pn(111, 1212).
Proposition 2.1.
If n ≥ 0, then pn(1222, 1212) = Ln.

Proof. We will define an explicit bijection between An and Ln−1 for all n ≥ 1. First observe that any member π ∈ Ancan be expressed as π = 1π11π2 · · · 1πr for some r ≥ 1, where πi does not contain 1 and is such that stanπi belongs to
Pni (111, 1212) for some ni ≥ 0 for all i (by stanπi we mean the equivalent partition on the letters {1, 2, . . .}, called the
standardization, obtained by replacing the j-th smallest letter of πi with j). Furthermore, note that it must be the casethat every letter of πj is larger than every letter of πi if j > i in order to avoid 1212.We now define, in a recursive fashion, a bijection between Rm and Mm for all m ≥ 0, where f0(∅) = ∅ and f1(1) = ` .If m ≥ 2 and λ ∈ Pm(111, 1212), then either

(i) λ = 1λ′ or (ii) λ = 1λ′1λ′′,
where 1 does not belong to λ′ or λ′′ and all of the letters of λ′′ are larger than all of those in λ′, with λ′ and λ′′ bothavoiding the patterns 111 and 1212. If m ≥ 2, we define fm, recursively, by setting fm(λ) = `fm−1(λ′) in the first caseand by setting fm(λ) = ufm1 (λ′)dfm2 (λ′′) in the second, where m1 and m2 denote the respective lengths of λ′ and λ′′. Thebijection is reversed upon considering whether or not a path in Mm starts with ` or u, and in the latter case, consideringthe position of the first d returning to the x-axis. In what follows, we will write f to denote fm, suppressing the subscriptwhenever the cardinality of the underlying structure is understood.We now define a bijection g between An and Ln−1, which will give the result. If π = 1π11π2 · · · 1πr is as above, then let

g(π) = f(π1)uf(π2) · · · uf(πr).
To reverse g, suppose α ∈ Ln−1 terminates at the point (n− 1, r − 1) for some r ≥ 1. Given 0 ≤ i ≤ r − 1, let si denotethe rightmost step of α which either lies along the line y = i as an ` or touches it from above as a d or touches it frombelow as a u (in the case when i = 0, only the first two conditions would apply). Decompose α as α = α0α1 · · · αr−1,where α0 counts all steps of α up to and including s0 and αi, 1 ≤ i ≤ r − 1, is the sequence of steps starting with the udirectly following step si−1 and ending at step si. Note that αi = uα ′i if i ≥ 1, with α ′i and α0 possibly empty Motzkinpaths. Then define g−1(α) by

g−1(α) = 1f−1(α0) 1f−1(α1) · · · 1f−1(αr−1).
Figure 1 below illustrates the path g(π) corresponding to π = 12334215511617898 ∈ A17.One can give a full bijection between Rm and Mm as follows. First recall the equivalence between Catalan paths ofsemilength m and perfect matchings of [2m] that avoid the pattern 1212 (called non-crossing matchings, see, e.g., [8])obtained by drawing horizontal lines to the right of each up step in a Catalan path, noting the position of the first downstep encountered, and partitioning the steps into the m position pairs. The resulting perfect matching on [2m] avoids1212 and, conversely, starting with such a matching, one can construct a Catalan path of semilength m whose paired upand down steps correspond to the blocks of the matching.
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Figure 1: The Motzkin left factor g(π) ∈ L16.

One can give a full bijection between Rm and Mm as follows. First recall the equivalence
between Catalan paths of semilength m and perfect matchings of [2m] that avoid the pattern
1212 (called non-crossing matchings, see, e.g., [8]) obtained by drawing horizontal lines to the
right of each up step in a Catalan path, noting the position of the first down step encountered,
and partitioning the steps into the m position pairs. The resulting perfect matching on [2m]
avoids 1212 and, conversely, starting with such a matching, one may construct a Catalan path
of semilength m whose paired up and down steps correspond to the blocks of the matching.

Now suppose π ∈ Rm and let S ⊂ [m] comprise the set of singletons of π with k = |S|. Let π′

denote the standardization of the partition π ∩ ([m]− S). Since π′ is a perfect matching which
avoids 1212, one may construct a Catalan path p(π′) of semilength (m−k)/2 as described above.
Then insert level steps ` into p(π′) such that their positions correspond to the elements of S to
yield a Motzkin path of length m. This process is seen to be reversible.

We now consider avoidance of the patterns 1112 and 1212.

Proposition 2.2. The generating function for the number of partitions of [n], n ≥ 0, that avoid
the patterns 1112 and 1212 is given by

1− 3x+
√
1− 2x− 3x2

2(1− 3x)
.

Proof. If n ≥ 3 and π ∈ Bn, then we may decompose π as either

(i) π = 1α 11 · · · 1︸ ︷︷ ︸
s times

or (ii) π = 1β1γ 11 · · · 1︸ ︷︷ ︸
s times

,

where s ≥ 0, α is a possibly empty partition on the letters {2, 3, . . .} avoiding the patterns 1112
and 1212, β is a possibly empty partition on {2, 3, . . . , i} for some i avoiding 111 and 1212, and
γ is a non-empty partition on the letters {i+ 1, i+ 2, . . .} avoiding 1112 and 1212. Note that β
must avoid 111 since γ is assumed non-empty. Let M(x) denote the generating function for the
Motzkin numbers Mn, i.e., M(x) =

∑
n≥0 Mnx

n. If h(x) =
∑

n≥0 |Bn|xn, then we see from the
prior proof and the above decompositions that it must satisfy

h(x) = 1 +
x

1− x
h(x) +

x2

1− x
M(x)(h(x) − 1),

i.e.,

h(x) =
1− x− x2M(x)

1− 2x− x2M(x)
.

Upon simplifying, the required result now follows from the last equation and the fact M(x) =
1−x−

√
1−2x−3x2

2x2 .

Remark: It is possible to construct a bijection between Bn and Ln 1. Note that the members

Figure 1. The Motzkin left factor g(π) ∈ L16.

Now suppose π ∈ Rm and let S ⊂ [m] comprise the set of singletons of π with k = |S|. Let π′ denote the standardizationof the partition π ∩ ([m]−S). Since π′ is a perfect matching which avoids 1212, one may construct a Catalan path p(π′)of semilength (m− k)/2 as described above. Then insert level steps ` into p(π′) such that their positions correspond tothe elements of S to yield a Motzkin path of length m. This process is seen to be reversible.We now consider avoidance of the patterns 1112 and 1212.
Proposition 2.2.
The generating function for the number of partitions of [n], n ≥ 0, that avoid the patterns 1112 and 1212 is given by

1− 3x +√1− 2x − 3x22(1− 3x) .

Proof. If n ≥ 3 and π ∈ Bn, then we can decompose π as either
(i) π = 1α 11 · · · 1︸ ︷︷ ︸

s times
or (ii) π = 1β1γ 11 · · · 1︸ ︷︷ ︸

s times
,

where s ≥ 0, α is a possibly empty partition on the letters {2, 3, . . .} avoiding the patterns 1112 and 1212, β is apossibly empty partition on {2, 3, . . . , i} for some i avoiding 111 and 1212, and γ is a non-empty partition on the letters
{i+ 1, i+ 2, . . .} avoiding 1112 and 1212. Note that β must avoid 111 since γ is assumed non-empty. Let M(x) denotethe generating function for the Motzkin numbers Mn, i.e., M(x) = ∑n≥0 Mnxn. If h(x) = ∑n≥0 |Bn|xn, then we see fromthe prior proof and the above decompositions that it must satisfy

h(x) = 1 + x1− x h(x) + x21− x M(x)(h(x)− 1),
i.e.,

h(x) = 1− x − x2M(x)1− 2x − x2M(x) .Upon simplifying, the required result now follows from the last equation and the fact that
M(x) = 1− x −√1− 2x − 3x22x2 .

Remark.It is possible to construct a bijection between Bn and Ln−1. Note that the members of Bn of the form in the firstdecomposition above, i.e., in the case (i), correspond to paths in Ln−1 starting with `su and not returning to the x-axiswhen α is non-empty and to the path `n−1 when α is empty. Members of Bn of the form in (ii) correspond to paths in
Ln−1 of the form `suλ′dλ′′, where λ′ and λ′′ denote a Motzkin path and a Motzkin left factor, respectively.
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2.2. The case {1211, 1221}
Let π = π1π2 · · · πn denote a partition of [n], represented canonically. Recall that empty sums take the value zero,by convention. To establish this case, we divide up the set of partitions in question according to a certain statistic,namely, the one which records the length of the maximal increasing initial run. To do so, given k ≥ 1, let fk (x)denote the generating function for the number of partitions π = π1π2 · · · πn ∈ Pn(1211, 1221), where n ≥ k , such that
π1π2 · · · πk = 12 · · · k with πk+1 ≤ k (if there is a (k + 1)-st letter). We have the following relation involving thegenerating functions fk (x).
Lemma 2.3.
If k ≥ 1, then

fk (x) = xk + xk f1(x) + k−1∑
j=1 x

j+1fk−j (x), (3)
with initial condition f0(x) = 1, where fk (x) = ∑

i≥k
fi(x).

Proof. Note that f1(x) = x + xf1(x), since a partition in this case can just have one letter or start with 11. Thus (3)holds in the case k = 1 since empty sums take value zero, by convention. If k ≥ 2, then a partition π enumerated by
fk (x) must be of one of the following three forms:

(i) 12 · · · k, (ii) 12 · · · kjπ′, 1 ≤ j ≤ k − 1, (iii) 12 · · · kkπ′′.
The first case contributes xk . Note that in the second case, the word π′ contains no letters in [j ], for otherwise if itcontained a letter in [j − 1], then there would be an occurrence of 1221 (with ijji for some i < j) and if it contained theletter j , then there would be an occurrence of 1211 (with jkjj). Thus, the letters (j + 1)(j + 2) · · · kπ′, taken together,comprise a partition of the form enumerated by fk−j (x). One may then safely delete from π the letters in [j − 1] as wellas both copies of the letter j since they are seen to be extraneous concerning possible occurrences of 1211 or 1221.Thus, the contribution in this case towards the generating function fk (x) is xj+1fk−j (x). Similar reasoning in the thirdcase yields a contribution of xk f1(x) since π′′ can contain no letters in [k − 1], whence the letters in [k − 1] as well asthe second k are extraneous. Combining the three cases yields (3).
We now prove the third case in Theorem 1.1 above.
Proposition 2.4.
The generating function for the number of partitions of [n], n ≥ 0, that avoid the patterns 1211 and 1221 is given by

1− 3x +√1− 2x − 3x22(1− 3x) .

Proof. Define the generating function f(x, y) = ∑
k≥0 fk (x)yk . Multiplying (3) by yk and summing over k ≥ 1 yields

f(x, y) = 1 + xy1− xy + xy1− xy f1(x) +∑
k≥2
 k−1∑

j=1 x
j+1fk−j (x)

yk

= 1 + xy1− xy + xy1− xy (f(x, 1)− 1) +∑
j≥1 x

j+1 ∑
k≥j+1 fk−j (x)yk = 1 + xy1− xy f(x, 1) +∑

j≥1 x
j+1yj∑

k≥1 fk (x)yk
= 1 + xy1− xy f(x, 1) + x2y1− xy∑

k≥1 y
k
∑
i≥k

fi(x) = 1 + xy1− xy f(x, 1) + x2y1− xy∑
i≥1 fi(x)

i∑
k=1 y

k

= 1 + xy1− xy f(x, 1) + x2y2(1− xy)(1− y) ∑
i≥1 fi(x)(1− yi) = 1 + xy1− xy f(x, 1) + x2y2(1− xy)(1− y) (f(x, 1)− f(x, y)),
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which implies (1 + x2y2(1− xy)(1− y)
)
f(x, y) = 1 + ( xy1− xy + x2y2(1− xy)(1− y)

)
f(x, 1). (4)

This type of functional equation can be solved systematically using the kernel method [2]. In this case, if we assumethat y = y0 in (4), where y0 satisfies
1 + x2y20(1− xy0)(1− y0) = 0, i.e., y0 = 1 + x −

√1− 2x − 3x22x (1 + x) ,

then ∑
n≥0 Pn(1211, 1221)xn = f(x, 1) = 11− xy0/(1− xy0) = 1− 3x +√1− 2x − 3x22(1− 3x) ,

as required. (Note that f(0, 1) = 1 dictates our choice of root for y0.)
Remark.Substituting the expression above for f(x, 1) into (4) recovers the expression for f(x, y), from which one can compute anexplicit formula for the coefficient of xnyk .
2.3. The case {1222, 1221}
We once again divide up the set of partitions in question according to the statistic which records the length of themaximal increasing initial run. If k ≥ 1, then let fk (x) (respectively, gk (x)) denote the generating function for the numberof partitions π of [n] having at least k letters and avoiding the patterns 1222 (respectively, 111) and 1221 such that
π1π2 · · · πk = 12 · · · k with πk+1 ≤ k (if there is a (k + 1)-st letter). We have the following relations involving thegenerating functions gk (x) and fk (x).
Lemma 2.5.
If k ≥ 1, then

gk (x) = xk + k∑
j=1 x

j+1gk−j (x), (5)
with initial condition g0(x) = 1, where gk (x) = ∑

i≥k
gi(x).

Proof. If k ≥ 1, then a partition π enumerated by gk (x) must be of one of the following two forms:
(i) 12 · · · k, (ii) 12 · · · kjπ′, 1 ≤ j ≤ k.

The first case contributes xk . Note that in the second case, the word π′ contains no letters in [j ], for otherwise therewould be an occurrence of 1221 if it contained a letter in [j − 1] or an occurrence of 111 if it contained the letter j . Thus,the letters (j + 1)(j + 2) · · · kπ′, taken together, comprise a partition of the form enumerated by gk−j (x), which impliesthe contribution in this case is xj+1gk−j (x). Combining the two cases yields (5).
Lemma 2.6.
If k ≥ 1, then

fk (x) = xk + xfk (x) + k∑
j=2 x

j+1gk−j (x), (6)
with initial condition f0(x) = 1, where fk (x) = ∑

i≥k
fi(x).
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Proof. Note that f1(x) = x + xf1(x), since a partition in this case can have just one letter or start with 11. If k ≥ 2,then a partition π enumerated by fk (x) must be of one of the following three forms:
(i) 12 · · · k, (ii) 12 · · · k1π′, (iii) 12 · · · kjπ′′, 2 ≤ j ≤ k.

The second case contributes xfk (x), as we can safely delete the second 1 from π since it is superfluous concerningpossible occurrences of 1222 or 1221, with the resulting partition 12 · · · kπ′ of the form enumerated by fk (x). Note thatin the third case, the word π′′ contains no letter in [j ], for otherwise there would be an occurrence of 1221 if it containeda letter in [j −1] or an occurrence of 1222 if it contained the letter j . Thus, the letters (j+1)(j+2) · · · kπ′′, taken together,comprise a partition of the form enumerated by gk−j (x) since it must avoid {111, 1221}, which implies the contributionin this case is xj+1gk−j (x), upon including the letters in [j − 1] as well as the two copies of j . Combining the three casesyields (6).
The final case of Theorem 1.1 now follows from the two previous lemmas.
Proposition 2.7.
The generating function for the number of partitions of [n], n ≥ 0, that avoid the patterns 1222 and 1221 is given by

1− 3x +√1− 2x − 3x22(1− 3x) .

Proof. Define the generating functions g(x, y) = ∑
k≥0 gk (x)yk and f(x, y) = ∑

k≥0 fk (x)yk . Multiplying (5) and (6)by yk and summing over k ≥ 1 yields
g(x, y) = 11− xy +∑

k≥1 y
k

k∑
j=1 x

j+1gk−j (x) = 11− xy + x2y1− xy∑
k≥0 y

kgk (x)
= 11− xy + x2y(1− xy)(1− y) (g(x, 1)− yg(x, y)),

f(x, y) = 11− xy + x
∑
k≥1 y

k fk (x) +∑
k≥2 y

k
k∑
j=2 x

j+1gk−j (x)
= 11− xy + xy1− y∑

i≥1
(1− yi)fi(x) + x3y2(1− xy)(1− y) ∑

i≥0
(1− yi+1)gi(x)

= 11− xy + xy1− y (f(x, 1)− f(x, y)) + x3y2(1− xy)(1− y) (g(x, 1)− yg(x, y)).
This implies

(1 + x2y2(1− xy)(1− y)
)
g(x, y) = 11− xy + x2y(1− xy)(1− y) g(x, 1), (7)(1 + xy1− y

)
f(x, y) = 11− xy + xy1− y f(x, 1) + x3y2(1− xy)(1− y) (g(x, 1)− yg(x, y)). (8)

To solve these functional equations, we use the kernel method. In this case, if we assume that y = y0 in (7), where y0satisfies 1 + x2y20(1− xy0)(1− y0) = 0, i.e., y0 = 1 + x −
√1− 2x − 3x22x (1 + x) ,

then ∑
n≥0 Pn(111, 1221)xn = g(x, 1) = y01− xy0 = 1− x −√1− 2x − 3x22x2 .
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Moreover, (7) gives
g
(
x, 11− x

) = 1− x1− 3x (1− xg(x, 1)). (9)
Now, if we assume that y = y1 = 1/(1− x) in (8), then

f(x, 1) = 1− x1− 2x − x21− 2x
(
g(x, 1)− 11− x g

(
x, 11− x

))
,

which, by (9), implies
f(x, 1) = 1− 3x +√1− 2x − 3x22(1− 3x) ,

as required.
3. Other results

In this section, we prove some results related to Theorem 1.1.
3.1. A refinement and an identity

One can refine Theorem 1.1 by adding a parameter y which records the number of blocks of a partition.
Theorem 3.1.
If n, k ≥ 0, then pn,k (u, v) is the same for the following pairs (u, v):

(i) (1222, 1212), (ii) (1112, 1212), (iii) (1211, 1221), (iv) (1222, 1221).
Furthermore, the common generating function h(x, y) = ∑

n,k≥0pn,k (u, v)xnyk is given by

h(x, y) = (2− y) + x
(
y2 − 2y − 2) + y

√(1− xy)2 − 4x2y2(1− (2y+ 1)x) . (10)
Proof. We compute h(x, y) in the first case. For this, we consider the generating function M(x, y) defined by

M(x, y) = ∑
n,k≥0pn,k (111, 1212)xnyk .

From the reasoning in the second paragraph of the proof of Proposition 2.1, we see that it must satisfy
M(x, y) = 1 + xyM(x, y) + x2yM(x, y)2

and is thus given by
M(x, y) = 1− xy −√(1− xy)2 − 4x2y2x2y .

From the proof of Proposition 2.1, we also see that h(x, y) in the first case is given by
1 + y

∑
i≥1
(
xM(x, y))i = 1 + xyM(x, y)1− xM(x, y) ,

which yields (10), upon substituting the expression for M(x, y) and simplifying. A similar proof applies in the secondcase, upon adjusting the argument given for Proposition 2.2. The last two cases follow from the proofs of Propositions2.4 and 2.7, upon adding an extra parameter recording the number of blocks in a partition.
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Remark.Substituting y = 1 in (10) yields (1).
Using the interpretation for the numbers Ln given in Theorem 1.1 and of the Motzkin numbers given in the proof ofProposition 2.1, one can perhaps supply combinatorial proofs (in the sense of [4]) of certain identities involving thesenumbers more easily. We give one such example below. We have not been able to find the following identity in theliterature. It follows easily from the generating functions, once stated.
Proposition 3.2.
The numbers Ln and Mn satisfy the relation

Ln = 3Ln−1 −Mn−2, n ≥ 2, (11)
with L0 = L1 = 1.

Proof. By Theorem 1.1, the left side of (11) counts the members of An. To show that the right side also achieves this,first note that there are Ln−1 members of An that end in 1 as well as Ln−1 members whose final letter occurs nowhereelse. So we must show that the members of An whose final letter is greater than 1 and occurs one other time number
Ln−1−Mn−2. We will denote this subset by A′n. Let A∗n ⊆ An consist of those partitions having at least two occurrencesof 1. Note that |A∗n| = Ln −Mn−1, upon subtracting the members of An having a single 1, of which there are Mn−1 (notethat they are of the form 1α , where α ∈ Rn−1).To complete the proof, it suffices to define a bijection between A′n and A∗n−1. Note that π ∈ A′n implies that it can beexpressed as π = π′aπ′′a, where a > 1, each element of [a − 1] occurs in π′, and all of the letters of π′′ are greaterthan a. Define f : A′n → A∗n−1 by f(π) = π′1π′′. One can verify that f is a bijection; note that f is well-defined since
a > 1 implies π′ is non-empty.
3.2. Statistics on partitions and paths

In this section, we consider statistics on the set of partitions which avoid {111, 1212} as well as on the set avoiding
{1222, 1212}. Recall that Pn(111, 1212) is denoted by Rn. In Section 2.1 we saw the equivalence of the set of partitions
Rn and the set of Motzkin paths Mn. Here, we take this equivalence a step further and consider a pair of equallydistributed statistics on the two sets. We also consider extensions of these statistics to the sets An = Pn(1222, 1212)and Ln−1, thereby obtaining a p, q-analogue of the sequence Ln.Given π = π1π2 · · · πn ∈ Rn, expressed canonically, let desπ denote the number of descents of π, i.e., the number ofindices i, 1 ≤ i ≤ n − 1, such that πi > πi+1, and let inv π denote the number of inversions of π, i.e., the number ofordered pairs (i, j) with 1 ≤ i < j ≤ n and πi > πj . Define the distribution polynomial Mn(p, q) by

Mn(p, q) = ∑
π∈Rn

pdesπqinv π , n ≥ 1,
with M0(p, q) = 1. For example, if n = 4, then

R4 = {1122, 1123, 1223, 1233, 1234, 1213, 1232, 1221, 1231},
which implies M4(p, q) = 5 + 2pq+ 2pq2.Note that π ∈ Rn can be expressed as either (i) 1α or (ii) 1β1γ, where α , β, and γ do not contain 1 and all of theletters of γ are greater than all of the letters of β. Conditioning on the length i of β, where we differentiate betweenthe i = 0 and i > 0 cases, we obtain the recurrence

Mn(p, q) = Mn−1(p, q) + (1− p)Mn−2(p, q) + p
n−2∑
i=0 q

iMi(p, q)Mn−2−i(p, q), n ≥ 2, (12)
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with the initial conditions M0(p, q) = M1(p, q) = 1.Given λ ∈ Mn, consider the matching u, d pairs obtained by drawing a horizontal line to the right of each u in λ andnoting the d where it first intersects λ again. For each such pair, consider the number of steps of λ (including ` ’s) strictlybetween the u and the d and then add up the resulting numbers for all of the pairs to obtain a value which we willdenote by sum λ. Let num λ denote the number of matching pairs in which the u and d are separated by at least onestep. We leave it as an exercise for the reader to verify that the joint distribution of (num, sum) on Mn is equal to thedistribution of (des, inv) on Rn. The next proposition summarizes the above observations.
Proposition 3.3.
Let Mn(p, q) be given by recurrence (12). Then for all n ≥ 0, we have

Mn(p, q) = ∑
π∈Rn

pdesπqinv π = ∑
λ∈Mn

pnum λqsum λ.

Remark.The statistic num is seen to give the number of occurrences of `d or dd within a member of Mn. Thus, num (and hencedes on Rn) is seen to be equivalent to the “right double fall” statistic considered in [14], upon comparing the definitions.On the other hand, we were unable to find in the literature the sum statistic on Mn. Also, our formula concerning thetotal num on Mn as well as the extension of num to Ln seem to be new.
When p = 0 or q = 0, note that (12) reduces to the Fibonacci recurrence and we have Mn(0, q) = Mn(p, 0) = Fn for all
n ≥ 0. This can be realized combinatorially by observing that members of Rn having either no descents or no inversionsare precisely those in which each block is of the form {i} or {i, i+1} for some i. Such partitions are clearly synonymouswith square-and-domino tilings of length n and thus they are counted by Fn. A similar interpretation can be given forthis using Motzkin paths.Let M(x;p, q) = ∑

n≥0Mn(p, q)xn. Multiplying (12) by xn and summing over n ≥ 2 yields the relation
M(x;p, q) = 1 + x(1 + (1− p)x)M(x;p, q) + px2M(qx;p, q)M(x;p, q). (13)

While it does not seem possible to find an explicit expression for M(x;p, q) for general p and q, one can give thefollowing continued fraction expansion.
Proposition 3.4.
We have

M(x;p, q) = 11− x (1 + (1− p)x)− px21−qx (1+(1−p)qx)− pq2x21−q2x (1+(1−p)q2x)− pq4x2
...

.

Proof. By (13), we have
M(x;p, q) = 11− x (1 + (1− p)x)− px2M(qx;p, q) .Applying this recurrence an infinite number of times yields the required result.

Remark.An explicit formula for Mn(p, q) in the sense of [5, Proposition 3A] can be given using the above continued fractionexpansion, though it involves multiple sums. When q = 1, one can solve (13) explicitly to get
M(x;p, 1) = 1− x + (p − 1)x2 −√(1− x + (p − 1)x2)2 − 4px22px2 . (14)

We now derive an explicit formula for the number of members of Pn+m(111, 1212) having exactly m descents.
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Proposition 3.5.
The members of Pn+m(111, 1212) having exactly m descents number

n∑
j=m+1

1
j

(
j

m+ 1
)(

j
m

)(
j − m
n − j

)

for all n ≥ 1 and m ≥ 0.

Proof. We first rewrite equation (13) when q = 1 in the form
M̃ = x (1 + M̃)(1 + x + pxM̃),

where M̃ = M(x;p, 1)− 1. We consider a more general equation
M = yx (1 +M)(1 + x + pxM)

and find the coefficient of yj in M. By the Lagrange inversion formula and the binomial theorem, we have
[yj ](M) = xj

j
[
zj−1] ((1 + z)j (1 + x + pxz)j) = xj

j
[
zj−1] j∑

i1=0
j∑

i2=0
(
j
i1
)(

j
i2
)(px)i2 (1 + x)j−i2zi1+i2

= xj
j

j−1∑
i2=0

(
j

j − 1− i2
)(

j
i2
)(px)i2 j−i2∑

i3=0
(
j − i2
i3
)
xi3 ,

which implies
M̃ = M

∣∣
y=1 =∑

j≥1
j−1∑
i2=0

j−i2∑
i3=0

1
j

(
j

i2 + 1
)(

j
i2
)(

j − i2
i3
)
pi2xj+i2+i3 .

Thus, we have [
pm
](M̃) = ∑

j≥m+1
j−m∑
i3=0

1
j

(
j

m+ 1
)(

j
m

)(
j − m
i3
)
xj+m+i3 ,

and, letting n = j + i3, we get [
xn+mpm](M̃) = n∑

j=m+1
1
j

(
j

m+ 1
)(

j
m

)(
j − m
n − j

)
,

which completes the proof.
See [14] for a similar formula for the number of paths in Mn having a prescribed number of levels and right double falls.Let bn denote the total number of descents in all of the members of Pn(111, 1212). Differentiating both sides of (14)with respect to p, and letting p = 1, implies

d
dp M(x;p, 1)∣∣∣

p=1 = x2 + x − 1 + (x2 − 3x + 1)√(1 + x)(1− 3x)2x2 ,

which is known to be the generating function for the number of compact-rooted directed animals of size n having threesource points; see, e.g., [6] or [16, A005775]. Thus, this number equals bn for all n ≥ 3 and it would be interesting tofind a combinatorial proof.On the other hand, when p = 1, it does not seem that (13) can be solved explicitly for general q nor are we able to finda closed form for Mn(1, q). However, we do have the following result when q = −1.
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Proposition 3.6.
If n ≥ 0, then

M2n(1, −1) = M2n+1(1, −1) = n∑
k=0
(
n
k

)
Ck , (15)

where Ck = 1
k + 1

(2k
k

)
denotes the k-th Catalan number.

Proof. We supply both algebraic and combinatorial proofs of this result. Taking p = 1 and q = −1 in (13) gives
M(x; 1, −1) = 1 + xM(x; 1, −1) + x2M(−x; 1, −1)M(x; 1, −1).

Replacing x with −x in this equation, solving the resulting system in the variables M(x; 1, −1) and M(−x; 1, −1), andnoting M(0; 1, −1) = 1 yields
M(x; 1, −1) = 1− x2 −√(1− x2)2 − 4x2(1− x2)2x2(1− x) ,

which can be rewritten as
M(x; 1, −1) = 11− x 1−√1− 4u2u ,

where u = x2/(1− x2). The result now follows from a short calculation using the facts that
∑
n≥0 Cnx

n = 1−√1− 4x2x and ∑
n≥k

(
n
k

)
xk = xk(1− x)k+1 .

To give a bijective proof of (15), let R+
n and R−n denote the subsets of Rn whose members have even and odd inv-parity,respectively. It suffices to identify a subset R∗n of R+

n having cardinality
bn/2c∑
k=0
(
bn/2c
k

)
Ck ,

along with an inv-parity changing involution of Rn − R∗n.Let us first consider the even case. Let R∗2n comprise those partitions π = π1π2 · · · π2n such that for all 1 ≤ i ≤ n either
π2i−1 and π2i are both the only letters of their kind in π or neither of them are. For example, if n = 5, then 1123456754and 1234556721 both belong to R∗10, but 1123442567 does not since π3π4 = 23, with 3 the only letter of its kind, but not2 (and likewise for π7π8). It is seen that all members of R∗2n have an even number of inversions and their cardinality isthe right-hand side of (15), upon choosing the n − k indices i such that both π2i−1 and π2i correspond to singletons.We now define an inv-parity involution of R2n − R∗2n. Suppose that π = π1π2 · · · π2n ∈ R2n − R∗2n and that i0 is the
smallest index i such that either π2i−1 or π2i is the only letter of its kind in π, but not both. Let π2i0−1π2i0 = ab and letus first assume that there is an additional a or b occurring to the right of b in π. We change that letter to the otheroption, noting that this changes the inv-parity since b = a+ 1 in this case. Otherwise, we must have either (i) a < b,where there is a second a to the left of this one, or (ii) a > b, where there is a second b to the left of the a. If (i) or(ii) occurs, then switch the order of the letters π2i0−1 and π2i0 , leaving the rest of π undisturbed. Using the appropriatemapping of the two described yields the desired involution of R2n − R∗2n.For the odd case, apply the involution described above in the even case to the first 2n letters of π = π1π2 · · · π2n+1 ∈
R2n+1 if π2n+1 is the only letter of its kind or if it does not equal a = π2i0−1 or b = π2i0 . Extend this involution bychanging π2n+1 to the other option if it happens that it equals either a or b. The set of survivors are precisely thosepartitions of the form π′(t + 1) for some t, where π′ ∈ R∗2n has exactly t distinct letters.
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One can also consider statistics on the set An = Pn(1222, 1212), or, equivalently, statistics on Ln−1, where n ≥ 1, andthereby obtain polynomial generalizations of Ln. Let desπ count the number of descents of π = π1π2 · · · πn ∈ An andlet inv∗π count the number of ordered pairs (i, j), 1 ≤ i < j ≤ n, with πi > πj > 1. One can also give equivalentstatistics on Ln−1, though their descriptions are lengthier than those given above for num and sum on Mn. Define thepolynomials Ln(p, q) by
Ln(p, q) = ∑

π∈An

pdesπqinv∗π , n ≥ 1,
with L0(p, q) = 1, and the generating function L(x;p, q) by

L(x;p, q) =∑
n≥0 Ln(p, q)xn.

The following result generalizes Proposition 2.1 and is equivalent to it in the case p = q = 1.
Theorem 3.7.
Let M(x;p, q) be given by (13). We have

L(x;p, q) = 1 + xM(x;p, q)1− x (1− p+ pM(x;p, q)) . (16)
Proof. We decompose non-empty π ∈ An as π = 1(π11)(π21) · · · (πr−11)πr , where r ≥ 1 and the πi contain no 1’s andavoid the patterns 111 and 1212. Considering whether or not π is empty, we see from Proposition 3.3 that each section
πi1 has the same generating function x (1− p+ pM(x;p, q)) for 1 ≤ i ≤ r − 1. The numerator xM(x;p, q) accounts forthe remaining letters, namely, 1πr .
Remark.One can also show (16) by first arguing directly that Ln(p, q) satisfies the relation

Ln+1(p, q) = Mn(p, q) + Ln(p, q) + p
n−1∑
i=1 Mi(p, q)Ln−i(p, q), n ≥ 1, (17)

which generalizes (2). Multiplying (17) by xn, summing over n ≥ 1, and solving for L(x;p, q) then yields (16).
Remark.Using (14) and (16), one can give an explicit formula for L(x;p, 1).
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