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Abstract: Let [,, n > 1, denote the sequence which counts the number of paths from the origin to the line x = n —1
using (1,1), (1, —1), and (1, 0) steps that never dip below the x-axis (called Motzkin left factors). The numbers L,
count, among other things, certain restricted subsets of permutations and Catalan paths. In this paper, we provide
new combinatorial interpretations for these numbers in terms of finite set partitions. In particular, we identify four
classes of the partitions of size n, all of which have cardinality L,, and each avoiding a set of two classical patterns
of length four. We obtain a further generalization in one of the cases by considering a pair of statistics on the
partition class. In a couple of cases, to show the result, we make use of the kernel method to solve a functional
equation arising after a certain parameter has been introduced.
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1. Introduction

Let M, be the set of all paths from (0,0) to (n,0) using (1,1), (1,—1) and (1,0) steps, which we will denote by u, d,
and ¢, respectively, with no steps lying below the x-axis (called Motzkin paths). The cardinality of M, defines the
Motzkin number M, which has been widely studied (see, e.g., [16, AO01006] and references therein). Let £, denote the
set of all paths of length n using u, d and ¢ steps starting from the origin and not dipping below the x-axis. Such paths
are called Motzkin left factors; see, e.q., [1, p.111] or [9, p.9]. Let L, = |L,—q| if n > 1, with Ly = 1. The L, are also
given by the generating function

o 1=3x4+V1—2x—3x?
)L = 2(1—3x) )

n>0
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and satisfy the relation

n—1

Ln+1 = Mn + Z MkLnfkr n>1, (2)

k=0
with L() = L1 =1

Among the other lattice path interpretations of the numbers L, is the fact that they count the symmetric Catalan paths
of semilength 2n — 1 with no peaks at even level as well as the Catalan paths of semilength n with no occurrence of
duuu. The L, also enumerate a variety of other structures, ranging from the set of directed animals [6] of size n to the
permutations of {1,2,...,n} simultaneously avoiding 321 and the barred pattern 41523, see [3], to the set of base 3
n-digit numbers whose digit sum is also n. See [16, A005773] for further information on these numbers. Here, we provide
new combinatorial interpretations for the L, in terms of finite set partitions, showing, in particular, that they enumerate
certain two-pattern avoidance classes.

If n > 1, then a partition of [n] = {1,2,...,n} is any collection of non-empty, pairwise disjoint subsets, called blocks,
whose union is [n]. (If n = 0, then there is a single empty partition which has no blocks.) Throughout, we will use the
term partition when referring to a partition of a set. A partition Il having exactly k blocks is also called a k-partition
and will be denoted by 'l = B4/B,/ - - - Bk, where the blocks are arranged in ascending order according to the size of
the smallest elements. We will denote the set of k-partitions of [n] by P, , and the set of all partitions of [n] by P,. One
can represent the partition 1 = By/B,/--- /By € P, x, equivalently, by the canonical sequential form 7 = mm, - - - 7,
wherein j € B”/' 1 < j < n, and in such case we will write 1 = st. For example, the partition [1=1,5,7/2,3/4,8/6 € Pg4
has the canonical sequential form m = 12231413. Note that m = mm - - 7, € P, is a restricted growth function from
[n] to [K] (see, e.g., [12] for details), meaning that it satisfies the following three properties: (i) 7y =1, (ii) 7 is onto [k],
and (iii) mq < max{m, 2, ..., m} +1forall i, 1 <i < n—1. In what follows, we will represent set partitions as
words using their canonical sequential forms and consider some particular cases of the general problem of counting the
members of a partition class having various restrictions imposed on the order of the letters.

A classical pattern T is a member of [¢]" which contains all of the letters in [¢]. We say that a word ¢ € [k]" contains
the classical pattern 7 if o contains a subsequence isomorphic to 7. Otherwise, we say that ¢ avoids . For example,
a word 0 = 010, - -- 0, avoids the pattern 132 if it has no subsequence ;00 with i < j < k and 0; < 0 < 0; and
avoids the pattern 1212 if it has no subsequence o;0;0,0; with 0; = 0x < g; = 0g,. The pattern avoidance question
has been the topic of many papers in enumerative combinatorics, starting with Knuth [11] and Simion and Schmidt [15]
on permutations and considered, more recently, on words, compositions, and finite set partitions. For the avoidance
problem on partitions, we refer the reader to the papers by Klazar [10], Sagan [13], and Jelinek and Mansour [8] and to
the references therein.

We will use the following notation. If {wy,wy,...} is a set of classical patterns, then let P,(wq, wy,...) and
Pn (w1, wy,...) denote, respectively, the subsets of P, and P, which avoid all of the patterns. We will denote
the cardinalities of P,(wq, wy,...) and P, (w1, wy,...) by p,(wq, wy,...) and p,(wq, wy, .. .), respectively.

In this paper, we identify four classes of partitions each avoiding a pair of classical patterns of length four and each
enumerated by the number L,. In addition to providing new interpretations for the numbers L,, this addresses specific
cases of a general question raised by Goyt in the final section of [7] concerning the avoidance by set partitions of two
or more patterns of length four. Our main result is the following theorem which we prove in the next section as a series
of propositions.

Theorem 1.1.
Ifn >0, then p,(u,v) = L, for the following sets (u, v):

(i) (1222,1212), (i) (1112,1212), (i) (1211,1221),  (iv) (1222,1221).

We remark that, in the first two cases, our proofs are more or less combinatorial, while, in the last two, they are algebraic
and involve applications of the kernel method [2] to solve the functional equations that arise once a certain parameter
has been introduced. In addition, we prove a refinement of Theorem 1.1 as well as obtain p, g-generalizations of the
numbers M, and L, by considering pairs of statistics on the sets P,(111,1212) and P,(1222,1212), respectively.
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2. Proof of the main result

Theorem 1.1 will follow from combining the propositions in the sections below. We first consider the patterns {1222, 1212}
and {1112,1212}.

2.1. Thecases {1222,1212} and {1112,1212}

Throughout, we will denote the sets P,(1222,1212) and P,(1112,1212) by A, and B, respectively. Let R, denote the
set P,(111,1212).

Proposition 2.1.
If n >0, then p,(1222,1212) = L,,.

Proof. We will define an explicit bijection between A, and £, _4 for all n > 1. First observe that any member 7 € A,
can be expressed as ;t = 1m17; - - - 171, for some r > 1, where 7; does not contain 1 and is such that stan st; belongs to
P,,(111,1212) for some n; > 0 for all i (by stan ;r; we mean the equivalent partition on the letters {1,2,...}, called the
standardization, obtained by replacing the j-th smallest letter of 71; with j). Furthermore, note that it must be the case
that every letter of 71; is larger than every letter of sr; if j > i in order to avoid 1212.

We now define, in a recursive fashion, a bijection between R, and M,, for all m > 0, where fy(@) = @ and f;(1) = £.
If m>2and A€ P,(111,1212), then either

() A=1X  or (i) A=1X1N,

where 1 does not belong to A" or A” and all of the letters of A” are larger than all of those in A, with A" and A” both
avoiding the patterns 111 and 1212. If m > 2, we define f,, recursively, by setting f,(A) = €f,_1(A) in the first case
and by setting f,(A) = uf,,, (X')dfy,(A”) in the second, where m; and m, denote the respective lengths of A" and A”. The
bijection is reversed upon considering whether or not a path in M, starts with ¢ or u, and in the latter case, considering
the position of the first d returning to the x-axis. In what follows, we will write f to denote f,, suppressing the subscript
whenever the cardinality of the underlying structure is understood.

We now define a bijection g between A, and £,_4, which will give the result. If 7 = 1117, --- 17, is as above, then let
g(m) = f(m)uf(my) - - uf(m,).

To reverse g, suppose a € £,_1 terminates at the point (n —1,r — 1) for some r > 1. Given 0 < i < r —1, let s; denote
the rightmost step of a which either lies along the line y = i as an £ or touches it from above as a d or touches it from
below as a u (in the case when i = 0, only the first two conditions would apply). Decompose a as a = apay - - a1,
where o counts all steps of a up to and including so and a;, 1 < i < r—1, is the sequence of steps starting with the u
directly following step s;_ and ending at step s;. Note that a; = uaq; if i > 1, with a] and qp possibly empty Motzkin
paths. Then define g~'(a) by

g () = 1 (ap) 1 () --- 1 (ar_q). O

Figure 1 below illustrates the path g () corresponding to 7 = 12334215511617898 € Ay;.

One can give a full bijection between R,, and M,, as follows. First recall the equivalence between Catalan paths of
semilength m and perfect matchings of [2m] that avoid the pattern 1212 (called non-crossing matchings, see, e.g., [8])
obtained by drawing horizontal lines to the right of each up step in a Catalan path, noting the position of the first down
step encountered, and partitioning the steps into the m position pairs. The resulting perfect matching on [2m] avoids
1212 and, conversely, starting with such a matching, one can construct a Catalan path of semilength m whose paired up
and down steps correspond to the blocks of the matching.

1123
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Figure 1. The Motzkin left factor g(r1) € L16.

Now suppose 7 € R,, and let S C [m] comprise the set of singletons of 7 with k = |S|. Let i’ denote the standardization
of the partition 7t N ((m]—S). Since &’ is a perfect matching which avoids 1212, one may construct a Catalan path p(sx')
of semilength (m — k)/2 as described above. Then insert level steps ¢ into p(s') such that their positions correspond to
the elements of S to yield a Motzkin path of length m. This process is seen to be reversible.

We now consider avoidance of the patterns 1112 and 1212.

Proposition 2.2.
The generating function for the number of partitions of [n], n > 0, that avoid the patterns 1112 and 1212 is given by

1—3x+V1—2x—3x2
2(1=3x) '

Proof. 1f n >3 and m € B,, then we can decompose 7 as either

() m#="1al1---1 or (i) 7#=181y11---1,

s times s times

where s > 0, a is a possibly empty partition on the letters {2,3,...} avoiding the patterns 1112 and 1212, B is a
possibly empty partition on {2,3,..., i} for some i avoiding 111 and 1212, and y is a non-empty partition on the letters
{i+1,i+2,...} avoiding 1112 and 1212. Note that B must avoid 111 since y is assumed non-empty. Let M(x) denote
the generating function for the Motzkin numbers M,, e, M(x) = Y o M.x". If h(x) = Y, 5, |Bn|x", then we see from
the prior proof and the above decompositions that it must satisfy - B

2

Mﬂ=1+41;Mﬂ+ Mx)(h(x) — 1),

11— 1T—x
e,
1—x — x*M(x)
hix) = ——————.
M) = T M

Upon simplifying, the required result now follows from the last equation and the fact that

1T—x—V1—2x—3x?
M(x) = 552 . O

Remark.

It is possible to construct a bijection between B, and £,_4. Note that the members of B, of the form in the first
decomposition above, i.e., in the case (i), correspond to paths in £,_; starting with #°u and not returning to the x-axis
when a is non-empty and to the path "' when a is empty. Members of B, of the form in (ii) correspond to paths in
L,_1 of the form £&°uA’d)\”, where A" and A" denote a Motzkin path and a Motzkin left factor, respectively.
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2.2. Thecase {1211,1221}

Let 1 = mm, -+ -, denote a partition of [n], represented canonically. Recall that empty sums take the value zero,
by convention. To establish this case, we divide up the set of partitions in question according to a certain statistic,
namely, the one which records the length of the maximal increasing initial run. To do so, given k > 1, let f(x)
denote the generating function for the number of partitions 7 = mm,--- 7w, € P,(1211,1221), where n > k, such that
Ty e = 12---k with miq < k (if there is a (k + 1)-st letter). We have the following relation involving the
generating functions f;(x).

Lemma 2.3.
If Kk > 1, then

felx) = X5+ X5F1(x) + > X Fi(x), 3)

with initial condition fo(x) = 1, where fi(x) = Y_ fi(x).
i>k

Proof. Note that f;(x) = x + xf(x), since a partition in this case can just have one letter or start with 11. Thus (3)
holds in the case k = 1 since empty sums take value zero, by convention. If k > 2, then a partition 7 enumerated by
fr(x) must be of one of the following three forms:

(@ 12---k, (i) 12---kjn', 1<j<k-—1, (édd) 12---kkr".
The first case contributes x*. Note that in the second case, the word &’ contains no letters in [j], for otherwise if it
contained a letter in [j — 1], then there would be an occurrence of 1221 (with ijji for some i < j) and if it contained the
letter j, then there would be an occurrence of 1211 (with jkjj). Thus, the letters (j + 1)(j + 2) - - - ko’ taken together,
comprise a partition of the form enumerated by f;_;(x). One may then safely delete from s the letters in [j — 1] as well
as both copies of the letter j since they are seen to be extraneous concerning possible occurrences of 1211 or 1221.
Thus, the contribution in this case towards the generating function fi(x) is x/*"f,_ j(x). Similar reasoning in the third
case yields a contribution of x¥f(x) since 7" can contain no letters in [k — 1], whence the letters in [k — 1] as well as
the second k are extraneous. Combining the three cases yields (3). O

We now prove the third case in Theorem 1.1 above.

Proposition 2.4.
The generating function for the number of partitions of [n], n > 0, that avoid the patterns 1211 and 1221 is given by

1—3x+\/1—2x—3x2
2(1—=3x)

Proof. Define the generating function f(x, y) = Y_ fi(x)y*. Multiplying (3) by y* and summing over k > 1 yields
k>0

k—1

Xy -
f(x,y):1+1_x f1(x )+ fo“fk,j(x) y*
k>2 \ j=1
:1+1Xy kaj(x f(x, 1) +Zx/+1fokx)y
- i>1 k>j+1 j>1 k>1
:1+1in9 1) + - Zy Zf(x_1+ AR Z (XZy
k>1 i>k i>1
2,,2
Xy i Xy Xy
-1 Fix 1 f.(x)(1 — g) = f(x, 1 fx, 1) — f
g )+(1 Z1 (x)(1 T g (N gy gy e = ey,

1125
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M=1S]

which implies
x2y? ) Xy
1+ — f(x,y)=1+( +
(1 =xy)(1 —y) T=xy (1 =xy)(1—y)
This type of functional equation can be solved systematically using the kernel method [2]. In this case, if we assume
that y = yo in (4), where y, satisfies

X2y2

f(x,1). (4)

Y3 V1= 2x =32
1+¢:0, Le. y0:1+x 1—2x —3x ’
(1= xyo)(1 — yo) 2x(1 + x)
then
1 1— V1 —2x—3x2
> P(1211,1221)x" = f(x,1) = _ 1o+ x— 3¢
>0 1= xyo/(1 — xyo) 2(1—3x)
as required. (Note that f(0,1) = 1 dictates our choice of root for yj.) 0
Remark.
Substituting the expression above for f(x, 1) into (4) recovers the expression for f(x, y), from which one can compute an

explicit formula for the coefficient of x"y*.

2.3. Thecase {1222,1221}

We once again divide up the set of partitions in question according to the statistic which records the length of the
maximal increasing initial run. If k > 1, then let fi(x) (respectively, g«(x)) denote the generating function for the number
of partitions s of [n] having at least k letters and avoiding the patterns 1222 (respectively, 111) and 1221 such that
- = 12+ -k with mq < k (if there is a (k + 1)-st letter). We have the following relations involving the
generating functions gi(x) and f(x).

Lemma 2.5.
If k > 1, then

k
gilx) =x+) X, (x), (5)
j=1

with initial condition go(x) =1, where g (x) = Y_ gi(x).
ik

Proof. If k > 1, then a partition s enumerated by g (x) must be of one of the following two forms:

(i) 12---k, (i) 12---kjx, 1<j<k.

The first case contributes x*

. Note that in the second case, the word 7’ contains no letters in [f], for otherwise there
would be an occurrence of 1221 if it contained a letter in [j — 1] or an occurrence of 111 if it contained the letter j. Thus,

the letters (j + 1)(j + 2) - -- ks, taken together, comprise a partition of the form enumerated by g,_;(x), which implies

the contribution in this case is x/*1§k7j(x). Combining the two cases yields (5). O
Lemma 2.6.
If Kk > 1, then
k
fi(x) = XX + xFi(x) + Zx/“@(_]-(x), (6)
j=2

with initial condition fo(x) =1, where fi(x) = _ fi(x).
i>k
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Proof. Note that f;(x) = x + xf1(x), since a partition in this case can have just one letter or start with 11. If k > 2,
then a partition 7 enumerated by fi(x) must be of one of the following three forms:

(@) 12---k, (i) 12---K\x, (i) 12---kjx", 2<j<k.

The second case contributes xfy(x), as we can safely delete the second 1 from s since it is superfluous concerning
possible occurrences of 1222 or 1221, with the resulting partition 12--- ks’ of the form enumerated by f;(x). Note that
in the third case, the word s contains no letter in [f], for otherwise there would be an occurrence of 1221 if it contained
a letter in [j—1] or an occurrence of 1222 if it contained the letter j. Thus, the letters (j+1)(j+2) - - - k", taken together,
comprise a partition of the form enumerated by g,_;(x) since it must avoid {111,1221}, which implies the contribution
in this case is x/*'g, _ ;(x), upon including the letters in [j — 1] as well as the two copies of j. Combining the three cases
yields (6). O

The final case of Theorem 1.1 now follows from the two previous lemmas.

Proposition 2.7.
The generating function for the number of partitions of [n], n > 0, that avoid the patterns 1222 and 1221 is given by

1—3x+V1—2x—3x2
2(1—3x) '

Proof.  Define the generating functions g(x,y) = Y- gx(x)y* and f(x,y) = Y- fi(x)y*. Multiplying (5) and (6)
by y* and summing over k > 1 yields

: 1
o) = 1 + 0 AT = e S
k1 =1 ¥ '=o
1 X2y
= 1 _ , ,
Toxy T (=g =g I =y9lxy)
f(x,g): +Xngka)+Zy ijﬂgk
k>1 k>2  j=2
= Xy f % 1— i+1 X
! _Xy i>1 (X (1 =xy)(1 —y) QZO( / )g,(x)
_ 1 Xy x3y?
= Ty T N = eyl + a9 1) = gg o y))
This implies
X2y I 2y
(”m)g(x"”‘pw ('Ifxy)(1—y) gx. 1), (7)
Xy _ Xy x3y?
(1+1—U)f(X'y)_1—xg+mf(x’1) Ty —g) 1901 = yglxy)). (8)

To solve these functional equations, we use the kernel method. In this case, if we assume that y = yo in (7), where yo

satisfies
2,2 14 x— V1 —2x—3x2
14— 29 _0 e, yo= + x X 3x’
(1 =xyo)(1 = yo) 2x(1+x)
then
1T—x—V1—=2x—3x2

Yo
E P,(111,1221)x" = g(x,1) = =
n>0 ( )X g(X ) 1 — XYo 2X2
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Moreover, (7) gives

g (x%) e T} )

Now, if we assume that y = y1 = 1/(1 — x) in (8), then

1T—x x? 1 1
f(x'1)_1—2x_1—2x (g(x,1)—1_x g(x,1_X)),
which, by (9), implies
1—3x+V1—2x—3x2
fx1) = 2(1—3x) '
as required. O

3. Other results

In this section, we prove some results related to Theorem 1.1.

3.1. Avrefinement and an identity

One can refine Theorem 1.1 by adding a parameter y which records the number of blocks of a partition.

Theorem 3.1.
Ifn,k >0, then p,«(u,v) is the same for the following pairs (u, v):

(i) (1222,1212), (i) (1112,1212), (i) (1211,1221),  (iv) (1222,1221).

Furthermore, the common generating function h(x,y) = Y_ pn(u,v)x"y* is given by
n,k>0

(2—y)+x(y2—2y—2)+y\/(1 —xy)? —4x%y . (10)

hix.y) = 2(1— 2y + 1))

Proof. We compute h(x, y) in the first case. For this, we consider the generating function M(x, y) defined by

Mix,y) =Y pai(111,1212)x"y*.

n,k>0
From the reasoning in the second paragraph of the proof of Proposition 2.1, we see that it must satisfy
M(x, y) =1+ xyM(x, y) + x*yM(x, y)?

and is thus given by
1—xy —~/(1 —xy)? —4x%y

M =
(x,y) 2y
From the proof of Proposition 2.1, we also see that h(x, y) in the first case is given by
: xyM(x, )
1 E M(x, =1+ ————,
Ty (X (x y)) + 1—xM(x, y)

i>1

which yields (10), upon substituting the expression for M(x, y) and simplifying. A similar proof applies in the second
case, upon adjusting the argument given for Proposition 2.2. The last two cases follow from the proofs of Propositions
2.4 and 2.7, upon adding an extra parameter recording the number of blocks in a partition. O
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Remark.
Substituting y =1 in (10) yields (1).

Using the interpretation for the numbers L, given in Theorem 1.1 and of the Motzkin numbers given in the proof of
Proposition 2.1, one can perhaps supply combinatorial proofs (in the sense of [4]) of certain identities involving these
numbers more easily. We give one such example below. We have not been able to find the following identity in the
literature. It follows easily from the generating functions, once stated.

Proposition 3.2.
The numbers L, and M, satisfy the relation

Ly=3L, 1 —M, 5  n>2 (11)

with L() = L1 =1

Proof. By Theorem 1.1, the left side of (11) counts the members of A,. To show that the right side also achieves this,
first note that there are L,_1 members of A, that end in 1 as well as L,_4 members whose final letter occurs nowhere
else. So we must show that the members of A, whose final letter is greater than 1 and occurs one other time number
L,—1 —M,_5. We will denote this subset by A),. Let A% C A, consist of those partitions having at least two occurrences
of 1. Note that |A%| = L, — M,,_1, upon subtracting the members of A, having a single 1, of which there are M,_; (note
that they are of the form 1a, where a € R,_4).

Note that 7 € A/, implies that it can be
expressed as 1 = s'an”a, where a > 1, each element of [@ — 1] occurs in 5/, and all of the letters of 7” are greater
than a. Define f: A, — A’_, by f(ir) = 7"1x”. One can verify that f is a bijection; note that f is well-defined since
a > 1 implies 7’ is non-empty. O

To complete the proof, it suffices to define a bijection between A, and A’ _,.

3.2. Statistics on partitions and paths

In this section, we consider statistics on the set of partitions which avoid {111,1212} as well as on the set avoiding
{1222,1212}. Recall that P,(111,1212) is denoted by R,. In Section 2.1 we saw the equivalence of the set of partitions
R, and the set of Motzkin paths M,. Here, we take this equivalence a step further and consider a pair of equally
distributed statistics on the two sets. We also consider extensions of these statistics to the sets A, = P,(1222,1212)
and £,_4, thereby obtaining a p, g-analogue of the sequence L,.

Given m = mum - -, € R,, expressed canonically, let des .t denote the number of descents of n, i.e., the number of
indices i, 1 < i < n —1, such that &; > m;4q, and let invr denote the number of inversions of m, i.e., the number of
ordered pairs (i, j) with 1 < i < j < n and m; > ;. Define the distribution polynomial M,(p, q) by

Mn(p:q) — Z pdeaninvn’ n> 1,

nER,

with My(p, g) = 1. For example, if n = 4, then
Ry = {1122,1123,1223,1233,1234,1213,1232,1221,1231},

which implies Ma(p, ) =5+ 2pq + 2pq°.
Note that m € R, can be expressed as either (i) 1a or (ii) 181y, where «, B, and y do not contain 1 and all of the

letters of y are greater than all of the letters of 8. Conditioning on the length i of B, where we differentiate between
the i =0 and i > 0 cases, we obtain the recurrence

n—2

Ma(p.q) = Moa(p, @) + (1 = p)Myalp,q) +p Y q'Milp, @)Ma2ilp.q). 0 >2, (12)
i=0

1129
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with the initial conditions My(p, q) = Mi(p, q) = 1.

Given A € M,,, consider the matching u, d pairs obtained by drawing a horizontal line to the right of each v in A and
noting the d where it first intersects A again. For each such pair, consider the number of steps of A (including #'s) strictly
between the u and the d and then add up the resulting numbers for all of the pairs to obtain a value which we will
denote by sumA. Let numA denote the number of matching pairs in which the u and d are separated by at least one
step. We leave it as an exercise for the reader to verify that the joint distribution of (num, sum) on M, is equal to the
distribution of (des, inv) on R,. The next proposition summarizes the above observations.

Proposition 3.3.
Let M, (p, q) be given by recurrence (12). Then for all n > 0, we have

M,,(p,q) = Z pdesﬂql“‘/” — Z pnum).qsum).'

neR, reM,

Remark.

The statistic num is seen to give the number of occurrences of ¢d or dd within a member of M,,. Thus, num (and hence
des on R,) is seen to be equivalent to the “right double fall” statistic considered in [14], upon comparing the definitions.
On the other hand, we were unable to find in the literature the sum statistic on M,. Also, our formula concerning the
total num on M,, as well as the extension of num to £, seem to be new.

When p = 0 or g = 0, note that (12) reduces to the Fibonacci recurrence and we have M, (0, g) = M,(p,0) = F, for all
n > 0. This can be realized combinatorially by observing that members of R, having either no descents or no inversions
are precisely those in which each block is of the form {i} or {i, i+ 1} for some i. Such partitions are clearly synonymous
with square-and-domino tilings of length n and thus they are counted by F,. A similar interpretation can be given for
this using Motzkin paths.

Let M(x;p,q) = 3_ M,(p, q)x". Multiplying (12) by x" and summing over n > 2 yields the relation
n>0
M(xip,q) =1+ x(1+ (1 = p)x)M(x; p, q) + px*M(gx; p, gM(x; p. q)- (13)

While it does not seem possible to find an explicit expression for M(x; p, g) for general p and g, one can give the
following continued fraction expansion.

Proposition 3.4.
We have

M(x;p,q) = 10— o2
— X —p)x)—
P 1=gx(1+(1=p) gx)—

pg?x? —
1=g2x (1+(1-p) g2~ L=

Proof. By (13), we have

1
M(xip.q) = .
T=x(1+ (1= p)x) — px*M(qx; p. q)
Applying this recurrence an infinite number of times yields the required result. O

Remark.
An explicit formula for M, (p, g) in the sense of [5, Proposition 3A] can be given using the above continued fraction
expansion, though it involves multiple sums. When g = 1, one can solve (13) explicitly to get

—x+(p=Nx*—~/(1T=x+(p—1)x%)2 — 4px2

1
Mixip, 1) = T

(14)

We now derive an explicit formula for the number of members of P,.,,(111,1212) having exactly m descents.
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Proposition 3.5.
The members of P, ,(111,1212) having exactly m descents number

L it () (27)

j=m+1
for all n >1 and m > 0.
Proof. We first rewrite equation (13) when g = 1 in the form
M = x(1+ M)(1 + x + pxM),
where M = M(x; p,1) — 1. We consider a more general equation
M = yx(1 + M)(1 + x + pxM)

and find the coefficient of y/ in M. By the Lagrange inversion formula and the binomial theorem, we have

. . J J . .
[yl](ﬂ) — XT‘/[qu] ((1 +Z)/(1 + x +pXZ)i) — X7J[Zif1] ZZ ([/1) (ljz) (pX)i2(1 +X)/*izzi1+i2

i1=0 i,=0
i j—1 . . ‘ j—i2 i ,
S () (e (1)
Y rs j=1-0k)\k oo \ 13

which implies

=1 j—iz . . . .
v i PN (T =2\ i i
M=M — _ 15} j+lz+i3‘
o =2_ j(i2+1)(i2)( i [P

j>1 i,=0 i3=0

-

Thus, we have
j—m , . .
Y o J\(J=m)\ jemti
m M) = _ J+m+i3
= ) ()
j=2m+1i3=0
and, letting n = j + i3, we get
_ n 1 ] ] ]_m
n+m . m _ _
Lx "W)‘,%/(mw)(m)(n—/ ’

which completes the proof. O

See [14] for a similar formula for the number of paths in M,, having a prescribed number of levels and right double falls.

Let b, denote the total number of descents in all of the members of P,(111,1212). Differentiating both sides of (14)
with respect to p, and letting p = 1, implies

d/\/l o1 X x =1+ (= 3x+1)3/(1 +x)(1 —3x)
dp (i p. )p=1_ 2x2 '

which is known to be the generating function for the number of compact-rooted directed animals of size n having three
source points; see, e.g., [6] or [16, A005775]. Thus, this number equals b, for all n > 3 and it would be interesting to
find a combinatorial proof.

On the other hand, when p =1, it does not seem that (13) can be solved explicitly for general g nor are we able to find
a closed form for M, (1, g). However, we do have the following result when g = —1.
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Proposition 3.6.
If n >0, then

Mon(1, =1) = Mapir(1, =1) = (
k=0

Z)Ck, (15)

1 2k
where C, = —— denotes the k-th Catalan number.
k+1\ k

Proof. We supply both algebraic and combinatorial proofs of this result. Taking p =1 and g = —1 in (13) gives
Mx;1,=1) =1+ xM(x;1,—1) + sz(—x;1,—1)/\/l(x;1,—1).

Replacing x with —x in this equation, solving the resulting system in the variables M(x; 1, —1) and M(—x; 1, —1), and
noting M(0; 1, —1) = 1 yields

1—x2— /(1= x2)2 —4x2(1 = x?)

M(x;1,—1) = ,
i1 =1) 22(1 —x)
which can be rewritten as
Mixi1,—1) = 1 1—\/1—4u'
1—x 2u

where u = x?/(1 — x?). The result now follows from a short calculation using the facts that

k

s 1T=V1—4x n\ X
%Cnx = and ;(k)x _m.

To give a bijective proof of (15), let R} and R, denote the subsets of R, whose members have even and odd inv-parity,
respectively. It suffices to identify a subset R* of R} having cardinality

()

along with an inv-parity changing involution of R, — R}.

Let us first consider the even case. Let R}, comprise those partitions ;t = mym, - - - 712, such that for all 1 < i < n either
7151 and 7ty; are both the only letters of their kind in 7t or neither of them are. For example, if n =5, then 1123456754
and 1234556721 both belong to Ry, but 1123442567 does not since 3714 = 23, with 3 the only letter of its kind, but not
2 (and likewise for ;r7g). It is seen that all members of R5, have an even number of inversions and their cardinality is
the right-hand side of (15), upon choosing the n — k indices i such that both m5;_; and 7y; correspond to singletons.

We now define an inv-parity involution of Ry, — Rj,. Suppose that 1 = mm - - m, € Ry — R;, and that i is the
smallest index i such that either ;1 or sy is the only letter of its kind in s, but not both. Let 7y, 151, = ab and let
us first assume that there is an additional a or b occurring to the right of b in 7. We change that letter to the other
option, noting that this changes the inv-parity since b = a + 1 in this case. Otherwise, we must have either (i) a < b,
where there is a second a to the left of this one, or (ii) @ > b, where there is a second b to the left of the a. If (i) or
(ii) occurs, then switch the order of the letters ;1 and s, leaving the rest of 7 undisturbed. Using the appropriate
mapping of the two described yields the desired involution of Ry, — R3,.

For the odd case, apply the involution described above in the even case to the first 2n letters of 1 = mmy - M1 €
Rans1 f map41 is the only letter of its kind or if it does not equal @ = my;_1 or b = my,. Extend this involution by
changing 7,41 to the other option if it happens that it equals either a or b. The set of survivors are precisely those
partitions of the form 7'(t 4+ 1) for some ¢, where " € R3, has exactly t distinct letters. O
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One can also consider statistics on the set A, = P,(1222,1212), or, equivalently, statistics on £,_1, where n > 1, and
thereby obtain polynomial generalizations of L,. Let des st count the number of descents of 7 = mym,--- 71, € A, and
let inv*r count the number of ordered pairs (i,j), 1 < i < j < n, with 1; > 1; > 1. One can also give equivalent
statistics on £,_1, though their descriptions are lengthier than those given above for num and sum on M,. Define the
polynomials L,(p, q) by

Lop.q) =) _p*™7"q™"  n>1,

neA,

with Lo(p, g) = 1, and the generating function L(x; p, g) by

Lixip.g) =) Lalp, q)x".

n>0

The following result generalizes Proposition 2.1 and is equivalent to it in the case p =g = 1.

Theorem 3.7.
Let M(x; p, q) be given by (13). We have

xM(x; p, q) .
1—=x(1—=p+pMix;p,q))

Lixp.q) =1+ (16)

Proof. We decompose non-empty 7 € A, as & = 1(m1)(m1) - - - (m,_11) 7, where r > 1 and the m; contain no 1's and
avoid the patterns 111 and 1212. Considering whether or not 7 is empty, we see from Proposition 3.3 that each section
;1 has the same generating function x(1 — p + pM(x; p, g)) for 1 < i < r —1. The numerator xM(x; p, q) accounts for
the remaining letters, namely, 17,. O

Remark.
One can also show (16) by first arguing directly that L,(p, q) satisfies the relation

n—1
Losa(p, @) = Mu(p. @) + Lolp.q) +pY_Mip,q)La—ilp.q), 1 =1, (17)
i=1

which generalizes (2). Multiplying (17) by x”, summing over n > 1, and solving for L(x; p, g) then yields (16).

Remark.
Using (14) and (16), one can give an explicit formula for L(x; p,1).
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