Abstract
We survey recent results on the mathematical modeling of nonconvex and nonsmooth contact problems arising in mechanics and engineering. The approach to such problems is based on the notions of an operator subdifferential inclusion and a hemivariational inequality, and focuses on three aspects. First we report on results on the existence and uniqueness of solutions to subdifferential inclusions. Then we discuss two classes of quasi-static hemivariational ineqaulities, and finally, we present ideas leading to inequality problems with multivalued and nonmonotone boundary conditions encountered in mechanics.
[1] Clarke F.H., Optimization and Nonsmooth Analysis, Canad. Math. Soc. Ser. Monogr. Adv. Texts, John Wiley & Sons, New York, 1983 Search in Google Scholar
[2] Denkowski Z., Migórski S., Papageorgiou N.S., An Introduction to Nonlinear Analysis: Theory, Kluwer, Boston, 2003 10.1007/978-1-4419-9158-4Search in Google Scholar
[3] Denkowski Z., Migórski S., Papageorgiou N.S., An Introduction to Nonlinear Analysis: Applications, Kluwer, Boston, 2003 10.1007/978-1-4419-9156-0Search in Google Scholar
[4] Duvaut G., Lions J.-L., Inequalities in Mechanics and Physics, Grundlehren Math. Wiss., 219, Springer, Berlin-New York, 1976 10.1007/978-3-642-66165-5Search in Google Scholar
[5] Eck C., Jarušek J., Krbec M., Unilateral Contact Problems, Pure Appl. Math. (Boca Raton), 270, Chapman Hall/CRC, Boca Raton, 2005 10.1201/9781420027365Search in Google Scholar
[6] Han W., Sofonea M., Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, AMS/IP Stud. Adv. Math., 30, American Mathematical Society, Providence, 2002 10.1090/amsip/030Search in Google Scholar
[7] Jarušek J., Dynamic contact problems with given friction for viscoelastic bodies, Czechoslovak Math. J., 1996, 46(121)(3), 475–487 10.21136/CMJ.1996.127309Search in Google Scholar
[8] Jarušek J., Eck C., Dynamic contact problems with small Coulomb friction for viscoelastic bodies. Existence of solutions, Math. Models Methods Appl. Sci., 1999, 9(1), 11–34 http://dx.doi.org/10.1142/S021820259900003810.1142/S0218202599000038Search in Google Scholar
[9] Migórski S., Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction, Appl. Anal., 2005, 84(7), 669–699 http://dx.doi.org/10.1080/0003681050004812910.1080/00036810500048129Search in Google Scholar
[10] Migórski S., Evolution hemivariational inequality for a class of dynamic viscoelastic nonmonotone frictional contact problems, Comput. Math. Appl., 2006, 52(5), 677–698 http://dx.doi.org/10.1016/j.camwa.2006.10.00710.1016/j.camwa.2006.10.007Search in Google Scholar
[11] Migórski S., Ochal A., Hemivariational inequality for viscoelastic contact problem with slip-dependent friction, Nonlinear Anal., 2005, 61(1–2), 135–161 http://dx.doi.org/10.1016/j.na.2004.11.01810.1016/j.na.2004.11.018Search in Google Scholar
[12] Migórski S., Ochal A., A unified approach to dynamic contact problems in viscoelasticity, J. Elasticity, 2006, 83(3), 247–275 http://dx.doi.org/10.1007/s10659-005-9034-010.1007/s10659-005-9034-0Search in Google Scholar
[13] Migórski S., Ochal A., Quasi-static hemivariational inequality via vanishing acceleration approach, SIAM J. Math. Anal., 2009, 41(4), 1415–1435 http://dx.doi.org/10.1137/08073323110.1137/080733231Search in Google Scholar
[14] Migórski S., Ochal A., Sofonea M., History-dependent subdifferential inclusions and hemivariational inequalities in contact mechanics, Nonlinear Anal. Real World Appl., 2011, 12(6), 3384–3396 http://dx.doi.org/10.1016/j.nonrwa.2011.06.00210.1016/j.nonrwa.2011.06.002Search in Google Scholar
[15] Migórski S., Ochal A., Sofonea M., Nonlinear Inclusions and Hemivariational Inequalities, Adv. Mech. Math., 26, Springer, New York, 2012 10.1007/978-1-4614-4232-5Search in Google Scholar
[16] Naniewicz Z., Panagiotopoulos P.D., Mathematical Theory of Hemivariational Inequalities and Applications, Monogr. Textbooks Pure Appl. Math., 188, Marcel Dekker, New York, 1995 Search in Google Scholar
[17] Panagiotopoulos P.D., Inequality Problems in Mechanics and Applications, Birkhäuser, Boston, 1985 http://dx.doi.org/10.1007/978-1-4612-5152-110.1007/978-1-4612-5152-1Search in Google Scholar
[18] Panagiotopoulos P.D., Hemivariational Inequalities, Springer, Berlin, 1993 http://dx.doi.org/10.1007/978-3-642-51677-110.1007/978-3-642-51677-1Search in Google Scholar
[19] Shillor M., Sofonea M., Telega J.J., Models and Analysis of Quasistatic Contact, Lecture Notes in Phys., 655, Springer, Berlin, 2004 http://dx.doi.org/10.1007/b9979910.1007/b99799Search in Google Scholar
[20] Sofonea M., Rodríguez-Arós A., Viaño J.M., A class of integro-differential variational inequalities with applications to viscoelastic contact, Math. Comput. Modelling, 2005, 41(11–12), 1355–1369 http://dx.doi.org/10.1016/j.mcm.2004.01.01110.1016/j.mcm.2004.01.011Search in Google Scholar
[21] Zeidler E., Nonlinear Functional Analysis and its Applications, II/B, Springer, New York, 1990 http://dx.doi.org/10.1007/978-1-4612-0985-010.1007/978-1-4612-0985-0Search in Google Scholar
© 2012 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.