Abstract
We introduce new properties of Hamel bases. We show that it is consistent with ZFC that such Hamel bases exist. Under the assumption that there exists a Hamel basis with one of these properties we construct a discontinuous and additive function that is Marczewski measurable. Moreover, we show that such a function can additionally have the intermediate value property (and even be an extendable function). Finally, we examine sums and limits of such functions.
[1] Bartoszyński T., Judah H., Set Theory, A K Peters, Wellesley, 1995 10.1201/9781439863466Search in Google Scholar
[2] Brown J.B., Negligible sets for real connectivity functions, Proc. Amer. Math. Soc., 1970, 24(2), 263–269 http://dx.doi.org/10.1090/S0002-9939-1970-0249545-910.1090/S0002-9939-1970-0249545-9Search in Google Scholar
[3] Cichoń J., Jasiński A., A note on algebraic sums of subsets of the real line, Real Anal. Exchange, 2002/03, 28(2), 493–499 10.14321/realanalexch.28.2.0493Search in Google Scholar
[4] Cichoń J., Kharazishvili A., Węglorz B., Subsets of the Real Line, Wydawnictwo Uniwersytetu Łódzkiego, Łódź, 1995 Search in Google Scholar
[5] Cichoń J., Szczepaniak P., Hamel-isomorphic images of the unit ball, MLQ Math. Log. Q., 2010, 56(6), 625–630 http://dx.doi.org/10.1002/malq.20091011310.1002/malq.200910113Search in Google Scholar
[6] Ciesielski K., Jastrzębski J., Darboux-like functions within the classes of Baire one, Baire two, and additive functions, Topology Appl., 2000, 103(2), 203–219 http://dx.doi.org/10.1016/S0166-8641(98)00169-210.1016/S0166-8641(98)00169-2Search in Google Scholar
[7] Ciesielski K., Pawlikowski J., The Covering Property Axiom, CPA, Cambridge Tracts in Math., 164, Cambridge University Press, Cambridge, 2004 http://dx.doi.org/10.1017/CBO978051154645710.1017/CBO9780511546457Search in Google Scholar
[8] Ciesielski K., Pawlikowski J., Nice Hamel bases under the covering property axiom, Acta Math. Hungar., 2004, 105(3), 197–213 http://dx.doi.org/10.1023/B:AMHU.0000049287.44877.2c10.1023/B:AMHU.0000049287.44877.2cSearch in Google Scholar
[9] Ciesielski K., Recław I., Cardinal invariants concerning extendable and peripherally continuous functions, Real Anal. Exchange, 1995/96, 21(2), 459–472 10.2307/44152660Search in Google Scholar
[10] Császár Á., Laczkovich M., Discrete and equal convergence, Studia Sci. Math. Hungar., 1975, 10(3–4), 463–472 Search in Google Scholar
[11] Erdős P., Stone A.H., On the sum of two Borel sets, Proc. Amer. Math. Soc., 1970, 25(2), 304–306 10.2307/2037209Search in Google Scholar
[12] Filipów R., Recław I., On the difference property of Borel measurable and (s)-measurable functions, Acta Math. Hungar., 2002, 96(1–2), 21–25 http://dx.doi.org/10.1023/A:101566151133710.1023/A:1015661511337Search in Google Scholar
[13] Gibson R.G., Natkaniec T., Darboux like functions, Real Anal. Exchange, 1996/97, 22(2), 492–533 10.2307/44153937Search in Google Scholar
[14] Gibson R.G., Natkaniec T., Darboux-like functions. Old problems and new results, Real Anal. Exchange, 1998/99, 24(2), 487–496 10.2307/44152975Search in Google Scholar
[15] Gibson R.G., Roush F., The restrictions of a connectivity function are nice but not that nice, Real Anal. Exchange, 1986/87, 12(1), 372–376 10.2307/44151804Search in Google Scholar
[16] Kechris A.S., Classical Descriptive Set Theory, Grad. Texts in Math., 156, Springer, New York, 1995 http://dx.doi.org/10.1007/978-1-4612-4190-410.1007/978-1-4612-4190-4Search in Google Scholar
[17] Kuczma M., An Introduction to the Theory of Functional Equations and Inequalities, 2nd ed., Birkhäuser, Basel, 2009 http://dx.doi.org/10.1007/978-3-7643-8749-510.1007/978-3-7643-8749-5Search in Google Scholar
[18] Kysiak M., Nonmeasurable algebraic sums of sets of reals, Colloq. Math., 2005, 102(1), 113–122 http://dx.doi.org/10.4064/cm102-1-1010.4064/cm102-1-10Search in Google Scholar
[19] Miller A.W., Popvassilev S.G., Vitali sets and Hamel bases that are Marczewski measurable, Fund. Math., 2000, 166(3), 269–279 10.4064/fm-166-3-269-279Search in Google Scholar
[20] Mycielski J., Independent sets in topological algebras, Fund. Math., 1964, 55, 139–147 10.4064/fm-55-2-139-147Search in Google Scholar
[21] Natkaniec T., On extendable derivations, Real Anal. Exchange, 2008/09, 34(1), 207–213 10.14321/realanalexch.34.1.0207Search in Google Scholar
[22] Natkaniec T., Covering an additive function by < c-many continuous functions, J. Math. Anal. Appl., 2012, 387(2), 741–745 http://dx.doi.org/10.1016/j.jmaa.2011.09.03510.1016/j.jmaa.2011.09.035Search in Google Scholar
[23] Natkaniec T., Recław I., Universal summands for families of measurable functions, Acta Sci. Math. (Szeged), 1998, 64(3–4), 463–471 Search in Google Scholar
[24] Natkaniec T., Wilczyński W., Sums of periodic Darboux functions and measurability, Atti Sem. Mat. Fis. Univ. Modena, 2003, 51(2), 369–376 Search in Google Scholar
[25] Rogers C.A., A linear Borel set whose difference set is not a Borel set, Bull. London Math. Soc., 1970, 2(1), 41–42 http://dx.doi.org/10.1112/blms/2.1.4110.1112/blms/2.1.41Search in Google Scholar
[26] Sierpiński W., Sur la question de la mesurabilité de la base de M. Hamel, Fund. Math., 1920, 1, 105–111 10.4064/fm-1-1-105-111Search in Google Scholar
[27] Sierpiński W., Sur les suites transfinies convergentes de fonctions de Baire, Fund. Math., 1920, 1, 132–141 10.4064/fm-1-1-132-141Search in Google Scholar
[28] Szpilrajn E., Sur une classe de fonctions de M. Sierpiński et la classe correspondante d’ensembles, Fund. Math., 1935, 24, 17–34 10.4064/fm-24-1-17-34Search in Google Scholar
[29] Taylor A.D., Partitions of pairs of reals, Fund. Math., 1978, 99(1), 51–59 10.4064/fm-99-1-51-59Search in Google Scholar
[30] Walsh J.T., Marczewski sets, measure and the Baire property, Fund. Math., 1988, 129(2), 83–89 10.4064/fm-129-2-83-89Search in Google Scholar
© 2013 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.