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Abstract: We study a wide class of metrics in a Lebesgue space, namely the class of so-called admissible metrics. We
consider the cone of admissible metrics, introduce a special norm in it, prove compactness criteria, define the
ε-entropy of a measure space with an admissible metric, etc. These notions and related results are applied to the
theory of transformations with invariant measure; namely, we study the asymptotic properties of orbits in the cone
of admissible metrics with respect to a given transformation or a group of transformations. The main result of this
paper is a new discreteness criterion for the spectrum of an ergodic transformation: we prove that the spectrum is
discrete if and only if the ε-entropy of the averages of some (and hence any) admissible metric over its trajectory
is uniformly bounded.
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1. Introduction

This paper contains a number of results obtained in the framework of the program outlined by the first author in [10, 15, 17]and concerning the asymptotic dynamics of metrics in measure spaces and its applications to ergodic theory. In thesecond section, we study the space of so-called admissible metrics on a standard measure space; in the third section, weuse the developed machinery to characterize systems with discrete spectrum in terms of scaling entropy. The main ideaof our approach is as follows. Consider an action of a countable group G of measurable transformations in a standard
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Geometry and dynamics of admissible metrics in measure spaces

(Lebesgue) space (X, µ) with a continuous measure and assume that we are given a measurable (regarded as a functionof two variables) metric or semimetric ρ such that the corresponding metric space structure on X agrees with the measurespace structure (such a metric is called admissible, see below). We iterate the metric using the transformation group Gand consider the averages of these iterations over finite subsets of G chosen in a special way (for instance, over Følnersets in amenable groups):
ρav
n (x, y) = 1#An ∑g∈An ρ(gx, gy).

For the group Z with an automorphism T as a generator, we have
ρav
n (x, y) = 1

n

n−1∑
i=0 ρ(T ix, T iy).

We suggest to study the asymptotic behavior (as n → ∞) of this sequence of metrics and its invariants, and to findthose invariants that do not depend on the choice of the initial metric. The first example of such an invariant is the
ε-entropy of the corresponding metric measure space, more exactly, the scaling entropy. A general principle, which wejustify in this paper in the simplest case of a discrete spectrum action of an Abelian group (in particular, Z), is that theseasymptotic characteristics do not depend on the choice of the initial (semi)metric ρ, at least for a wide range of metrics,and thus are ergodic invariants of the action. Most probably, this is also true in many other cases.Of course, the limit mentioned above does exist almost everywhere by the ergodic theorem (applied to the square ofthe action on the space X ×X ) and is an invariant metric. But in most interesting cases, namely, when the orthogonalcomplement to the constants has no discrete spectrum, this limit metric is constant almost everywhere, so that itdetermines the discrete topology on X and hence is not admissible in our sense. However, we will be interested not inthe limit itself, but in the asymptotic behavior of the average metrics.The relation between scaling and classical entropies is easy to explain. The Kolmogorov entropy of an automorphism Tin Sinai’s definition is the limit of the entropy of the product of n rotations of a generating partition for T normalizedby n. If this entropy vanishes, no change of the normalization would give a new invariant. In our approach, we suggestto consider the normalized limits of the ε-entropy; and the difference with the classical approach is that we considernot the product of partitions, but the average metric. This allows us to define the asymptotics of the ε-entropy also inthe case where the Kolmogorov entropy vanishes. The corresponding growth (in n, for small ε) is determined by theso-called scaling sequence, and if the numerical limit does exist, then it is called the scaling entropy, see [11]. As avery special case, this notion includes also topological entropy. Some nontrivial examples for actions of groups of theform ∑∞1 Z2 were studied earlier, see [11, 18] 1.Similar suggestions, in different contexts and different generality, were studied earlier. Feldman [1], see also the laterpapers [5] and especially [2], where this problem is considered from the point of view of complexity theory, perceived therole of ε-entropy (without using this term). An important difference of our suggestion from all these papers is that insteadof the theory of measurable partitions (i.e., discrete semimetrics) we use the theory of general admissible semimetrics andconsider the operation of averaging metrics, which has no simple interpretation in terms of partitions (see the formulaabove). Averaging is much more natural for ergodic theory than taking the maximum of metrics. In another context, thisoperation was used in [7]. Considering scaling sequences for the ε-entropy of automorphisms will make it possible toclassify the “measure of chaoticity”  from the absence of growth (in the case of discrete spectrum) up to linear growth(in the case of positive Kolmogorov entropy). In between there must be classes of automorphisms with zero Kolmogoroventropy but different scaling entropy. In more traditional (probabilistic) terms, one might say that we suggest to considerthe asymptotics of sequences of Hamming-like metrics in the space of realizations of a stationary random process.Questions about more involved geometric invariants of sequences of metrics apparently were not even posed. What isthe difference between the sequence of average metrics on a measure space constructed from a Bernoulli automorphismand that constructed from a non-Bernoulli K-automorphism? The growth of the ε-entropy (the scaling sequence) in
1 In those papers, the problem arose in connection with the theory of filtrations and the past of Markov processes.
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these cases is the same; therefore, to distinguish between them, one needs to consider invariants not of a single metric,but of several consecutive metrics.To formulate very briefly the idea of the approach to ergodic theory suggested in [10, 15–17], one is to study random
stationary sequences of admissible metrics on a given measure space and their asymptotic invariants, in contrast to thetraditional probabilistic interpretation of this theory as the study of stationary sequences of random variables. It is quiteobvious that the information on the shifts contained in metrics is easier to extract than that contained in functions ofone variable, and this allows one to hope for a simplification of the whole theory.The results presented in the second section of the paper are devoted to preliminary considerations, namely, to the studyof admissible metrics on a measure space. On the one hand, Gromov’s remarkable work [4] initiated a systematic studyof so-called mm-spaces (which in [10] were called Gromov triples, or metric triples). The most important fact here is thereconstruction, or classification, theorem of Gromov and Vershik, about a complete system of invariants of nondegenerate
mm-spaces, see [4, 14] and below, which is a particular case of the classification theorem for measurable functions ofseveral variables [12]. On the other hand, starting from the first author’s papers [10, 13], the following point of view on
mm-spaces is suggested: in contrast to the classical approach, where one fixes a topological space (for instance, a metriccompact space) and considers various Borel measures on it, here, on the contrary, one fixes a σ-algebra and a measureand varies admissible metrics on this measure space. It is interesting that within this approach, even the notion of a(semi)metric needs to be slightly modified (fortunately, in a harmless way: “an almost metric is a metric”). We considerin detail several equivalent definitions of an admissible metric, which are heavily used in what follows and underlie thewhole approach. The admissibility of a metric on a measure space means merely that it is measurable and separable.The original measure is Borel with respect to any admissible metric, and the completion of the original space withrespect to an admissible metric is a Polish space with a nondegenerate Borel measure. There are many reformulationsof the notion of admissibility, including those involving matrix distributions, projective limits, etc. We consider summablemetrics; the space (cone) of admissible metrics lies in L1(X ×X, µ×µ) and is equipped with a special norm (called the
m-norm). The convergence in this norm is a “convergence with a regulator,” which appears in the theory of partiallyordered Banach spaces. We prove a number of properties of this norm and an important compactness criterion for afamily of metrics in this norm, which is a generalization of the Kolmogorov–Riesz compactness criterion for L1. In one ofthe subsections we discuss how an admissible metric can be restricted to the elements of a measurable partition. Thisquestion is related to a serious problem about the correctness of the restriction of a measurable function of two or morevariables to a subset of smaller dimension.The main result of this paper (the third section) illustrates this idea; namely, it says that for an action of Z (and discrete
Abelian groups), the spectrum is discrete if and only if for some (and hence any) admissible metric, the ε-entropy of its
averages is bounded. This criterion does not require explicit calculation of the spectrum or even (as in Kushnirenko’scriterion; see the last subsection) enumeration of the asymptotics of all possible sequences of entropies, etc. It sufficesto perform calculations only for one admissible metric. A similar result in a more special situation was obtained byanother method in [2, 3].In the last subsection, we discuss relations of our results with the characterization of discrete spectrum systems interms of Kirillov–Kushnirenko A-entropy (or sequential entropy) [6] and Kushnirenko’s compactness criterion for a setof partitions. The difference between our approaches is that we consider the ε-entropy of the averages of consecutiveiterations of a metric rather than the normalized entropy of the supremum over subsequences of partitions, as in [6]. Weformulate several open problems and conjectures.
2. The geometry of admissible metrics

2.1. Definitions of admissible metrics on measure spaces

Let (X, µ) be a Lebesgue space. We will be mainly interested in spaces with a normalized (i.e., such that µ(X ) = 1)continuous positive measure, but all definitions apply to an arbitrary Lebesgue space, in which the measure may containatoms.
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Definition 2.1.A metric or semimetric ρ on the space X is called admissible if it is measurable, regarded as a function of two variables,on the Lebesgue space (X×X, µ×µ) and there exists a subset X1 ⊂ X of full measure such that the semimetric space(X1, ρ) is separable.
In other terms, the separability condition is equivalent to the requirement that measure µ is a Radon (or σ-compact)Borel measure w.r.t. (semi)metric ρ.Since semimetrics play an essential role in our considerations, we use basic notions of the theory of metrics in the caseof semimetrics, too. For example, speaking about the Borel σ-algebra of sets in the case of a semimetric space, we meanthe σ-algebra generated by the open (in the sense of the semimetric in consideration) sets. Of course, this σ-algebradoes not in general separate points. One can easily see that if ρ is an admissible metric (resp. semimetric) in a space(X, µ), then the measure µ is Borel with respect to ρ, and the completion of appropriate subset X1 ⊂ X of full measurewith respect to ρ is a complete separable metric (= Polish) space (resp. complete separable semimetric space) in whichthe measure µ is nondegenerate (nonempty open sets have positive measure).An important class of admissible metrics is that of block semimetrics. Let ξ be a partition of the space (X, µ) into finitelyor countably many measurable sets Xi, i = 1, 2, . . . ; the block semimetric ρξ corresponding to ξ is defined as follows:
ρξ (x, y) = 0 if x, y lie in the same set Xi for some i, and ρξ (x, y) = 1 otherwise. It is called a cut semimetric (or just a
cut) if ξ is a partition into two subsets.A triple (X, µ, ρ), where (X, µ) is a Lebesgue space and ρ is an admissible metric, will be called an admissible metric
triple, or, in short, an admissible triple. In what follows, we are mostly interested in the case where the measure µis continuous (though we do not specify this explicitly), but nevertheless all definitions make sense for an arbitrary(in particular, finite) Lebesgue space. Unless otherwise stated, we assume that an admissible metric ρ is summable:∫

X

∫
X

ρ(x, y)dµ(x)dµ(y) < ∞.
In other words, ρ ∈ L1(X×X ). However, some results hold without this assumption; moreover, replacing the metric withan equivalent one, we can arrive at the case of a summable metric. Obviously, the (summable) admissible metrics forma cone in the space L1(X×X, µ×µ), which will be denoted by Adm (X, µ).The group G of all automorphisms (i.e., measurable, mod 0 invertible, µ-preserving transformations) of the space (X, µ)acts in L1(X×X, µ×µ) in a natural way, and this action preserves the cone Adm (X, µ) of admissible metrics. Asmentioned in the introduction, in what follows we fix a measure and vary admissible metrics. It is useful to give adefinition of an admissible metric which is formally less restrictive, but, however, turns out to be equivalent to theoriginal one.
Definition 2.2.An almost metric on a Lebesgue space (X, µ) is a measurable nonnegative function ρ on (X×X, µ×µ) such that
ρ(x, y) = ρ(y, x) for almost all pairs of points x, y ∈ X and ρ(x, z) ≤ ρ(x, y) + ρ(y, z) for almost all triples of points
x, y, z ∈ X .An almost metric ρ is called essentially separable if for every ε > 0, the space X can be covered by a countable familyof measurable sets with essential diameter (= essential supremum of the distances between points) less than ε.
In [19], the following correction theorem was proved.
Theorem 2.3.1) Let ρ be an almost (semi)metric on X. Then one can modify it on a set of zero measure in X so that the modified

function is an almost everywhere finite semimetric on X.2) Besides, if the almost semimetric ρ is essentially separable, then the modified semimetric can be chosen so that the
semimetric space (X, ρ) is separable and the corresponding triple is admissible.
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Note that the limit in measure (or the almost everywhere limit) of a sequence of (almost) metrics may turn out to bean almost metric, but the correction theorem says that this limit is equivalent to a semimetric. Thus in what followswe always assume that all almost metrics obtained by limit procedures are corrected to semimetrics, that is, the limitof a sequence of semimetrics with respect to almost everywhere convergence is a semimetric or a metric. By the sametheorem, the limit of a sequence of semimetrics in the space L1 can also be assumed to be a semimetric. In what follows,it is convenient to use the following notation.
Definition 2.4.Let A ⊂ X , and let ρ be a measurable semimetric on X . By diamρA and essdiamρA we denote the diameter and theessential diameter of the set A in the semimetric ρ, respectively.
2.2. The entropy of metric measure spaces; equivalent definitions of admissible metrics

Now we introduce the notion of the ε-entropy of a metric on a measure space, which is heavily used in the sequel. Thefollowing definition goes back to Kolmogorov.
Definition 2.5.Let (X, ρ) be a metric space equipped with a Borel probability measure µ. Consider the smallest positive integer k forwhich X can be represented as the union of sets X0, X1, . . . , Xk such that µ(X0) < ε and diamρXj < ε for j = 1, . . . , k .The ε-entropy of the admissible triple (X, µ, ρ) is

Hε(ρ, µ) = log k
(the logarithm is binary). If such k does not exist, we set Hε(ρ, µ) =∞.
However, it turned out that in some situations it is more convenient to use another definition, which was suggestedin [15] and involves the Kantorovich metric (or any other natural metric) in the space of measures defined on a metricspace.
Definition 2.6.Let (X, ρ) be a separable metric space. The Kantorovich (or transportation) metric Kρ on the simplex of Borel probabilitymeasures on X is defined by the formula

Kρ(µ1, µ2) = infΨ
∫∫
X×X

ρ(x, y)dΨ(x, y),
where Ψ ranges over the set of all Borel probability measures on X×X whose projections to the factors coincide withthe measures µ1 and µ2, respectively. The ε-entropy of an admissible triple (X, µ, ρ) is the following function of ε:

HK
ε (ρ, µ) = inf {H(ν) : Kρ(µ, ν) < ε};

here ν ranges over all finite atomic measures on X and the entropy of an atomic measure is defined in the usual way:
H
(∑

k ckδxk
) = −∑k ck log ck .

For a compact metric space, estimates relating these two definitions of the ε-entropy are given in [15]. The followingtheorem contains a series of equivalent definitions of admissible semimetrics, generalizing the results of [15, 19].
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Theorem 2.7.
Let ρ be a measurable semimetric on (X, µ). Then the following conditions are equivalent:1) The triple (X, µ, ρ) is admissible, i.e., the semimetric ρ is admissible for the measure space (X, µ).2) For every ε > 0, the semimetric ρ has a finite ε-entropy: Hε(ρ, µ) < ∞.3) The measure µ can be approximated in the metric Kρ by discrete (= finitely supported) measures.4) For µ-almost all x ∈ X and every ε > 0, the ball of radius ε (in the metric ρ) centered at x has positive measure.5) For every ε > 0, the space X can be represented as the union of sets X0, X1, . . . , Xk such that µ(X0) < ε andessdiamρXj < ε for j = 1, . . . , k.6) For every measurable set A of positive measure, the essential infimum of the function ρ on A×A is zero.

Let us comment on some implications.
Proof. In [19] it was proved that conditions 1), 2), and 4) are equivalent. The equivalence of 2) and 5) is obvious,since if essdiamρXj < ε, then Xj can be partitioned into two sets one of which has zero measure and the other onehas diameter at most 2ε. Indeed, if essdiamρXj < ε, then for almost every x ∈ Xj for almost all y ∈ Xj the inequality
ρ(x, y) < ε holds. Fix some point x0 ∈ Xj such that µ ({y ∈ Xj : ρ(x0, y) ≥ ε}) = 0. Then, by triangle inequality,diamρ{y ∈ Xj : ρ(x0, y) < ε} < 2ε.Now we prove that 2) implies 3). Since for every ε > 0, the ε-entropy of ρ (in the sense of Definition 2.5) is finite, thereexists a partition of X into sets X0, X1, . . . , Xk such that µ(X0) < ε and diamρXj < ε for j ≥ 1. For the set X0 choosea point x0 ∈ X , and for each of the sets Xj , j ≥ 1, choose an arbitrary point xj ∈ Xj . Consider the atomic measure

ν = k∑
j=0 µ(Xj )δxj

and write the inequality
Kρ(µ, ν) ≤ k∑

j=0
∫
Xj

ρ(xj , y)dµ(y) ≤ ε + ∫
X0
ρ(x0, y)dµ(y).

Choosing x0 appropriately, we can make the last term not bigger than its mean value∫
X

∫
X0
ρ(x, y)dµ(y)dµ(x).

Thus, for an appropriate choice of x0, we have
Kρ(µ, ν) ≤ ε + ∫

X0

∫
X

ρ(x, y)dµ(x)dµ(y).
This estimate corresponds to transferring the whole Xi to xi. The latter expression is small for sufficiently small ε bythe absolute continuity of the integral and the summability of the function ρ.Next we prove that 3) implies 6). If 6) does not hold, then there exist ε > 0 and a set A of positive measure such that
ρ(x, y) ≥ ε for almost all pairs x, y ∈ A. But then for every y ∈ X , for almost all x ∈ A, we have ρ(x, y) ≥ ε/2, so that
Kρ(µ, ν) ≥ µ(A)ε/2 for every atomic measure ν, a contradiction with 3).Finally, we prove that 6) implies 1), namely, we assume that ρ is not admissible and prove that 6) fails. For every fixed
ε > 0, the function x 7→ µ ({y ∈ X : ρ(x, y) < ε}) is measurable by Fubini’s theorem, so that the set Aε = {

x : µ ({y ∈
X : ρ(x, y) < ε}) = 0} is measurable. If ρ is not admissible, then 4) fails, hence for some ε > 0 the set Aε has positivemeasure. Taking A = Aε , we see that the essential infimum of ρ on A×A is positive.
Two more definitions of admissible metrics are given in subsection 2.6, one in terms of averages of distances over setsof positive measure, and the other one in terms of random distance matrices, which are invariants of metric triples.
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2.3. The theorem on conditional metrics

In this subsection, we prove a result similar to the well-known theorem on the existence of conditional measures(“Rokhlin’s canonical system of measures”) for measurable partitions: a theorem on the existence of a system of conditionaladmissible metrics on almost all elements of a partition. Thus we will show that if (X, µ, ρ) is an admissible metric triple,then for every measurable partition ξ of X , almost all elements of ξ can be equipped with a canonical structure of ametric triple with respect to the induced metric. A nontrivial issue is to define metrics on the elements of the partition.Recall that a measurable partition ξ of a Lebesgue space can be defined as the partition into the inverse images ofpoints under a measurable map from (X, µ) to another Lebesgue space, e.g., under a measurable real-valued functionor vector-valued function with values in a separable vector topological space. An intrinsic definition of a measurablepartition suggested in [8] relies on the existence of a countable basis of measurable sets determining the partition. For ameasurable partition ξ , the quotient space X/ξ (the base of ξ) is a Lebesgue space; the image of µ under the canonicalquotient map π : X → X/ξ is a measure µξ on X/ξ . The main characteristic property of a measurable partition is theexistence and uniqueness of a canonical system of conditional measures µC on µξ-almost all elements C ∈ X/ξ of ξ ,the spaces (C, µC ) being Lebesgue spaces. In fact, the theorem on existence of conditional measures is a theorem onan integral representation of the projection in L2 to the subspace of functions which are constant on the elements ofpartition ξ , or, in other words, this is an integral representation of the operator of the conditional expectation operator.The crucial fact is that for every µ-measurable map f with values in a space V with a Borel structure (e.g., a measurablereal-valued function), and for almost all elements C ∈ X/ξ of ξ , the restriction f�C of f to C is measurable with respectto the conditional measure µC , and the map C 7→ f�C is measurable on the base of ξ . For a summable function f thismeans that an analog of Fubini’s theorem holds: the integral of f over the whole space is equal to the iterated integralcomputed first over the elements and then over the base. All these definitions are well-behaved with respect to modifyinga measurable partition on a set of zero measure.Below we will obtain a similar result for measurable partitions of measure spaces equipped with a metric. Consideran admissible triple (X, µ, ρ) and assume that in X we are given a measurable partition ξ . Denote by µξ the quotientmeasure on the quotient space X/ξ , i.e., on the base of ξ . We will regard elements (fibers) of ξ either as points of thebase, denoting them by C ∈ X/ξ , or, if convenient, as subsets of X , writing C ∈ ξ . The conditional measure on anelement C will be denoted by µC .Using this notation, we state the theorem on existence of conditional metrics on almost all elements of a measurablepartition, and measurability of the dependence of a metric as a function of element C of the partition in appropriatesense. For making this statement rigorous we use a metric invariant of a function of two variables (in particular, ofa metric) on a measure space  so-called matrix distributions  which was introduced in [12]. This notion gives a simpleway to define what does it mean measurability of the family of metrics, which are defined on various spaces (on theelements of a partition)  see item 2) in the theorem.
Theorem 2.8.1) The restriction of the metric ρ to µξ-almost every element C ∈ ξ of the partition ξ is well defined and determines

the structure of an admissible triple (C, µC , ρC ) for almost all C ∈ ξ.2) Let n be a positive integer, let Ω be any open set in the n2-dimensional space of n×n matrices. For almost any
element C of ξ one may define by 1) an admissible triple (C, µC , ρC ). Let pΩ(C ) denote the probability that a matrix(ρ(zi, zj ))1≤i,j≤n belongs to Ω, where z1, . . . , zn are independent points in C distributed by µC . Then pΩ is a measurable
function of C.

It may seem that in order to obtain the required assertions, it suffices to restrict the metric to almost every element ofthe partition, but this is not so. The problem is that for measurable functions of two (or several) variables, e.g., for anadmissible metric, one cannot directly use a Fubini-like theorem on the measurability of restrictions of functions to theelements of the partition. Moreover, in general this is not true for an arbitrary function. Indeed, the set of pairs (x, y)lying in the same fiber of ξ has (in general) zero measure in X×X , hence there is no known canonical way to restrictan arbitrary µ2-measurable function f(x, y) to this set.
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Hence, in order to prove that the metrics on the elements are admissible and measurable over the base of the partition,one should use special properties of these functions. It turns out that the needed property is admissibility. Note thatsimilar questions, in spite of their importance, have not yet been studied in general setting. We use the separability ofan admissible metric, which ensures that this metric can be defined by a vector function of one variable. The trick ofpassing to a sequence for one or both arguments of a function of two arguments, mentioned above and exploited below,was essentially used in [12] for the classification of measurable functions of several variables via a random choice ofsequences.
Proof. Choose a sequence x1, x2, . . . in X , which is dense in some subset X1 of full measure in X . We use the functions
fn(·) = ρ(·, xn), n = 1, 2, . . . We also require that those functions are simultaneously measurable on X1. Further, notethat since the sequence {xn} is dense, we have

ρ(x, y) = inf
n
{fn(x)+ fn(y)}.

Therefore, for almost all elements C of ξ equipped with the conditional measures µC , this formula defines a metric as ameasurable function of two variables. The admissibility of the triple (C, µC , ρC ) is straightforward, because a subspaceof a separable metric space is separable. The fact that ρC is summable with respect to the measure µC×µC for almostevery C easily follows from the triangle inequality and separability.Now we should explain the measurability statement 2). Without loss of generality, Ω is a cylinder {(ai,j )1≤i,j≤n : 0 ≤
ai,j < pi,j} for fixed positive numbers pi,j . The condition ρ(x, y) = infn{fn(x)+ fn(y)} < p is equivalent to the countablenumber of conditions like fn(x) < r1, fn(y) < r2 for some index n and rationals r1, r2 with r1 + r2 < p. So, the probabilitythat a random distance matrix belongs to Ω may be expressed via probabilities that ρ(zi, xn) belongs to some interval ona real line. Such events are (at last) independent, and the product of corresponding probabilities is measurable, sinceeach of them is measurable by the Rokhlin theorem.
2.4. The space of admissible metrics. The definition and properties of the m-norm

When working with admissible semimetrics, it is convenient to introduce a special norm on the cone of admissible metrics
Adm , which we call the m-norm; it is defined on Adm and on a wider vector subspace of L1(X 2).
Definition 2.9.Given a function f ∈ L1(X 2), we define a finite or infinite norm of f as

‖f‖m = inf {‖ρ‖
L1(X2) : ρ is a semimetric, ρ(x, y) ≥ |f(x, y)| for almost all x, y ∈ X}.

Note that ‖ ·‖m is indeed a norm, in the sense that it is homogeneous and satisfies the triangle inequality. If f isa semimetric, then ‖f‖m = ‖f‖
L1(X2) . It follows directly from the definition that for every f we have ‖f‖m ≥ ‖f‖L1(X2) .Hence convergence in the m-norm implies convergence in L1(X 2). In the theory of partially ordered Banach spaces,such convergence is called convergence with a regulator. Note that the operators corresponding to measure-preservingautomorphisms preserve also the m-norm.Consider the set of all functions in L1(X 2) with finite m-norm:

M = {f ∈ L1(X 2) : ‖f‖m < ∞}.
Clearly, M is a linear subspace in L1(X 2).
Lemma 2.10.
The space M is complete in the m-norm.
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Proof. Let fn be a Cauchy sequence with respect to the m-norm. We will show that it has a limit in the m-norm.Since the L1 norm is dominated by the m-norm, fn is also a Cauchy sequence in L1(X 2), so that it has a limit f ∈ L1(X 2).Thinning the sequence, we may assume that fn converges to f almost everywhere and, besides, ‖fn−fn+1‖m < 1/2n forall n. By the definition of the m-norm, this means that there exists a semimetric ρn that dominates |fn−fn+1| almosteverywhere and satisfies ‖ρn‖L1(X2) < 1/2n. Note that the semimetric ∑∞
k=n ρk dominates the difference |fn−f| almosteverywhere, so that ‖fn−f‖m ≤ 1/2n−1. It follows that the sequence fn converges to f in the m-norm, as required.

Now we will study simple properties of convergence of semimetrics.
Lemma 2.11.
If a sequence of semimetrics ρn converges to a function ρ in the m-norm, and for every ε > 0 the entropy Hε(ρn, µ) is
finite for all sufficiently large n, then ρ is an admissible semimetric.

Corollary 2.12.
If a sequence of admissible semimetrics ρn converges to a function ρ in the m-norm, then ρ is also an admissible
semimetric.

Proof of Lemma 2.11. Since the sequence ρn converges in the m-norm, it also converges in the space L1(X 2), sothat we may assume that the limit function ρ is a semimetric. It remains to prove that ρ is admissible. For this we willshow that its ε-entropy is finite for every ε. First we prove an auxiliary proposition.
Proposition 1.
If p is a measurable semimetric on (Y , µ) such that ‖p‖

L1(Y2) < ε2/2, then there exist two disjoint sets Y0, Y1 with
Y0 ∪ Y1 = Y such that µ(Y0) ≤ ε and diampY1 ≤ ε.
Proof. Note that the map x 7→ µ ({y ∈ Y : p(x, y) ≥ ε/2}) is measurable by Fubini’s theorem, and its integral over
Y is bounded from above by (ε2/2)/(ε/2) = ε by Chebyshev’s inequality. Hence we can choose x0 such that the measureof the set Y0 = {y ∈ Y : p(x0, y) ≥ ε/2} does not exceed ε. But for any x, y ∈ Y1 = Y \ Y0, the triangle inequalityimplies that p(x, y) ≤ p(x, x0) + p(y, x0) ≤ ε. The proposition follows. �

Returning to the proof of the lemma, we fix ε > 0 and prove that H4ε(ρ) is finite. For large n, we have ‖ρn−ρ‖m < ε2/2.By the definition of the m-norm, this means that there exists a semimetric p such that ‖p‖
L1(X2) < ε2/2 and ρ ≤ p+ ρnalmost everywhere. As we have just proved, the set X can be partitioned into two sets X0 and X1 such that µ(X0) ≤ εand p(x, y) ≤ ε for all x, y ∈ X1. Choosing n large enough, we may assume that the number Hε(ρn) is finite, i.e., wecan find a partition X = A0 ∪ A1 ∪ · · · ∪ Ak such that µ(A0) < ε and diamρnAj < ε for j ≥ 1.Now we construct a partition for the semimetric ρ as follows. Put B0 = A0 ∪ X0 and Bj = Aj ∩ X1 for j = 1, . . . , k .Clearly, µ(B0) ≤ µ(A0) + µ(X0) < 2ε. For every j > 0, for almost all x, y ∈ Bj , we have the inequality ρ(x, y) ≤

ρn(x, y) + p(x, y) ≤ ε + ε = 2ε, which shows that essdiamρBj ≤ 2ε. Thus we have shown that for every ε > 0 thenumber H4ε(ρ) is finite and, consequently, that the semimetric ρ is admissible.
The following simple lemma says that the L1-limit of a sequence of admissible semimetrics with uniformly boundedentropies is again an admissible semimetric.
Lemma 2.13.
If M is a set of admissible semimetrics such that the set {Hε(ρ, µ) : ρ ∈ M} is bounded for every ε > 0, then the closure
of M in the space L1(X 2) consists of admissible semimetrics only.

Proof. Take an arbitrary function ρ from the closure of M in L1. We will prove that it is an admissible semimetric.We know that there exists a sequence of semimetrics {ρn} ⊂ M that converges to ρ in L1(X 2). Clearly, ρ is a semimetric,and one should only check that it is admissible.
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Assume to the contrary that ρ is not admissible. Then, by Theorem 2.7, there exist ε > 0 and a set A ⊂ X of positivemeasure such that ρ(x, y) ≥ ε for almost all x, y ∈ A. Decreasing ε if necessary, we may assume that µ(A) ≥ ε. Usingthe boundedness of entropies for ε/2, for each of the semimetrics ρn we find a partition X = X0 ∪ X1 ∪ · · · ∪ Xk suchthat diamρnXi ≤ ε/2 for all i = 1, . . . , k and µ(X0) ≤ ε/2. Of course, this partition may depend on n, but the number kcan be chosen to be universal, since the entropies are bounded. Note that at least one of the sets Xi ∩ A, i ≥ 1, hasmeasure not less than ε/2k . Moreover, for almost all x, y ∈ Xi ∩ A, we have
ρ(x, y)− ρn(x, y) ≥ ε − ε2 = ε2 , whence ‖ρ−ρn‖L1(X2) ≥

(
ε2k
)2 ε2 > 0.

The latter inequality contradicts the convergence of ρn to ρ in L1(X 2), and the lemma follows.
In conclusion of this subsection, we prove a lemma on pointwise convergence of admissible semimetrics.
Lemma 2.14.
Assume that a sequence of admissible semimetrics ρn converges to an admissible semimetric ρlim almost everywhere with
respect to the measure µ×µ. Then there exists a set X ′ ⊂ X of full measure such that for any x, y ∈ X ′,

lim sup
n

ρn(x, y) = ρlim(x, y).
Besides, if x, y ∈ X ′ and ρlim(x, y) = 0, then lim

n
ρn(x, y) = 0.

Proof. Consider the function ρ(x, y) = lim supn ρn(x, y). The functions ρ and ρlim coincide on a set of full measurein X 2. We must prove that they coincide on the square of a set X ′ of full measure in X . Note that the function ρ satisfiesthe triangle inequality everywhere (as upper limit of semimetrics); also it is finite almost everywhere with respect tothe measure µ2, because the function ρlim is finite a.e. Put X ′′ = {
x ∈ X : µ ({y : ρ(x, y) = +∞}) = 0}. Note that

µ(X ′′) = 1. We will prove that ρ(x, y) < +∞ for any x, y ∈ X ′′. Indeed, if ρ(x, y) = +∞, then for every z ∈ X wehave either ρ(x, z) = +∞ or ρ(y, z) = +∞, contradicting the choice of X ′′. Thus on X ′′ the semimetric ρ is finite andcoincides almost everywhere with ρlim. Using the characterization of admissibility in terms of the measures of balls fromTheorem 2.7 for the semimetrics ρlim and ρ, we see that ρ is also admissible. Then, by [19, Theorem 3], there exists aset X ′ ⊂ X ′′ of full measure such that ρlim = ρ on the square of X ′. The last claim is obvious.
2.5. Convergence of admissible metrics. A precompactness criterion

Lemma 2.15.
Assume that a sequence of uniformly bounded semimetrics ρn converges to an admissible semimetric ρ in L1. Then this
sequence converges in the m-norm to the same limit.

Proof. Let R be a constant bounding all semimetrics ρn, ρ. Fix ε > 0 and, using the admissibility of ρ, find a partitionof the space X into sets A0, A1, . . . , Ak such that µ(A0) < ε and diamρAj ≤ ε2 for j > 0. We may assume that
δ = min{µ(Aj ) : j = 1, . . . , k} > 0.

Note that for every j > 0 the sequence of restricted semimetrics ρn�A2
j

converges to the semimetric ρ�A2
j

in the space
L1(A2

j ). By construction, the limit semimetric does not exceed ε2 everywhere on Aj , hence for sufficiently large n we have
∥∥ρn�A2

j

∥∥
L1(A2

j ) ≤ 2ε2µ(Aj )2.
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Now consider the set Aj equipped with the normalized measure µ/µ(Aj ) and apply Proposition 1 to the restriction ofthe semimetric ρn to Aj . We see that Aj can be partitioned into two sets Bj (n), Cj (n) such that µ(Bj (n)) ≤ 2εµ(Aj ) anddiamρnCj (n) ≤ 2ε. This immediately implies that µ(Cj (n)) ≥ (1−2ε)µ(Aj ).Choose n so large that these inequalities hold for all j = 1, . . . , k . We put C (n) = ⋃k
j=1 Cj (n) and prove that if n issufficiently large, then |ρn(u, v)−ρ(u, v)| ≤ 10ε for any u, v ∈ C (n). If u, v ∈ Cj (n) for some j , then |ρn(u, v)−ρ(u, v)| ≤

ρn(u, v) + ρ(u, v) ≤ 3ε by construction. Now let u0 ∈ Ci(n), v0 ∈ Cj (n), and i 6= j . If |ρn(u0, v0)− ρ(u0, v0)| > 10ε, thenfor all u ∈ Ci(n), v ∈ Cj (n) we have
|ρn(u, v)−ρ(u, v)| ≥ |ρn(u0, v0)−ρ(u0, v0)| − (ρn(u0, u) + ρn(v0, v) + ρ(u0, u) + ρ(v0, v)) > 4ε.

But then ‖ρn−ρ‖L1(X2) ≥ 4εµ(Ci)µ(Cj ) ≥ 4ε(1−2ε)2δ2, which cannot be true for large n. Thus for all sufficiently large n,for any two points u, v ∈ C (n) we have |ρn(u, v)−ρ(u, v)| ≤ 10ε. It follows from the construction that the measureof C (n) is large, more exactly, µ(C (n)) ≥ (1− 2ε)(1−ε).Define a metric pn as follows. On the set C (n)×C (n) it is identically equal to 10ε, and on the remaining set it is equalto 2R + 10ε. We have just proved that on C (n) this metric dominates the difference |ρn−ρ|. On the remaining set, italso dominates the distance, because all original semimetrics are bounded by R . Since R is fixed, for sufficiently small εthe metric pn has an arbitrarily small L1 norm. Thus the sequence ρn converges to ρ in the m-norm, and the lemmafollows.
In what follows, we need a lemma on truncations of semimetrics. Given an arbitrary function f and a real number R ,denote by fR the truncation of f at level R , that is, fR (·) = min(f(·), R).
Lemma 2.16.
For a summable semimetric p on the space (X, µ) and every R > 0,

‖p−p2R‖m ≤ 2 ∫
p>R

pdµ2.

Proof. Choosing an arbitrary point x ∈ X , consider the ball B = {y ∈ X : p(x, y) ≤ R} and its complement A = X\B.Now we define a semimetric q as follows:

q(u, v) =


0 if u, v ∈ B,
p(u, v) if u, v ∈ A,
p(u, x) if u ∈ A, v ∈ B,
p(v, x) if u ∈ B, v ∈ A.

One can easily check that q is indeed a semimetric and, besides, for any u, v ∈ X we have p(u, v)−p2R (u, v) ≤ q(u, v).Thus, by the definition of the m-norm,
‖p − p2R‖m ≤ ‖q‖L1(X2) = ∫

X×X

qdµ2 =  ∫
A×A

+ ∫
A×B

+ ∫
B×A

+ ∫
B×B

qdµ2 = ∫
A×A

p(u, v)dµ(u)dµ(v) + 2 ∫
A×B

p(u, x)dµ(u)dµ(v)
≤
∫
A×A

(p(u, x)+p(x, v))dµ(u)dµ(v) + 2µ(B) ∫
A

p(u, x)dµ(u)
= 2(µ(A)+µ(B)) ∫

A

p(u, x)dµ(u) = 2 ∫
A

p(u, x)dµ(u).
Now we can optimize this bound by choosing x. Note that the average of the right-hand side over x ∈ X coincides with2 ∫p>R pdµ2; hence, choosing x appropriately, we obtain the desired bound.
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We use this lemma to deduce a more general theorem.
Theorem 2.17.
Assume that a sequence of semimetrics ρn converges to an admissible semimetric ρ in the space L1. Then this sequence
converges in the m-norm to the same limit.

Proof. We just use the two lemmas already proved. Fix δ > 0 and, using the absolute continuity of the integral of ρ,choose R > 0 so large that ∫
ρ>R/2

ρ dµ2 < δ.

Since the sequence ρn converges to ρ in L1(X 2), for sufficiently large n we have∫
ρn>R

ρndµ2 < 2δ.
The truncations ρ2R

n converge to ρ2R in the space L1(X 2), since for any functions f, g we have
‖f2R−g2R‖

L1(X2) ≤ ‖f −g‖L1(X2) .
Applying Lemma 2.15 to the truncations, we see that for sufficiently large n, ‖ρ2R

n −ρ2R‖m ≤ δ. Using Lemma 2.16 twice,we can write the inequality
‖ρn−ρ‖m ≤ ‖ρn−ρ2R

n ‖m + ‖ρ2R
n −ρ2R‖m + ‖ρ−ρ2R‖m ≤ 4δ.

Thus the sequence ρn converges to ρ in the m-norm, as required.
This theorem easily implies the following corollary.
Corollary 2.18.
A set of admissible semimetrics is compact in the m-norm if and only if it is compact in L1.

In the remaining part of this subsection we prove a precompactness criterion for the m-norm.
Theorem 2.19.
Let M be a set of admissible semimetrics on (X, µ). Then M is precompact in the m-norm if and only if the following
two conditions hold:1) (uniform integrability) the set M is uniformly integrable on X 2;2) (uniform admissibility) for every ε > 0 there exists a partition of X into finitely many sets X1, . . . , Xk such that for

every semimetric ρ ∈ M there exists a set A ⊂ X of measure less than ε such that diamρ(Xj \A) < ε.

Note that condition 2) in the statement of the theorem can be replaced with the equivalent condition in which diam isreplaced by essdiam. Moreover, each of these conditions implies that the set {Hε(ρ) : ρ ∈ M} is bounded for every ε > 0.It is worth mentioning that we will use not only the definition of uniform integrability, but also its reformulation. Wewill say that a family of functions K ⊂ L1(Ω, ν) is uniformly integrable if for every ε > 0 there exists δ > 0 such thatfor every set A ⊂ Ω with ν(A) < δ, for every function f ∈ K ,∫
A

|f| dν < ε.

Now we proceed to the proof of the theorem.
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Proof. First we will prove that if M is precompact in the m-norm, then conditions 1) and 2) are satisfied. Note thatsince the m-norm dominates the L1 norm, the set M is precompact in the space L1 and hence uniformly integrable.Consider an arbitrary finite partition ξ of the space X into sets X1, . . . , Xk . Assume that for some semimetric ρ thepartition ξ is an ε-partition, i.e., there exists an exceptional set A such that µ(A) < ε and diamρ(Xj \A) < ε, j = 1, . . . , k .Using Proposition 1, one can easily see that there exists δ > 0 such that if ‖ρ−ρ1‖m < δ, then ξ is an ε-partition for ρ1,too. That is, the set of semimetrics for which a given partition is an ε-partition is open in the m-norm. We will refer tothis set as corresponding to ξ . By Corollary 2.12, the closure of the set M in the m-norm consists only of admissiblesemimetrics, each having a finite ε-partition. Let us cover the closure of M (which is a compact set) by the open setscorresponding to finite partitions. This open cover has a finite subcover. Clearly, the product of the correspondingpartitions is a universal ε-partition for all semimetrics in M, i.e., condition 2) is satisfied.Now we will prove that conditions 1) and 2) are sufficient for M to be precompact. First we prove that the set Mis precompact in the space L1(X 2). It suffices to find, for every ε > 0, a finite 4ε-net in the L1 norm. The uniformintegrability of the family M means that
lim

R→+∞ sup
ρ∈M

∫∫
ρ>R

ρ d(µ×µ) = 0.
Hence for sufficiently large R , all truncations of the functions are close in the L1 norm (and even in the m-norm) to thecorresponding semimetrics from M. Therefore, it suffices to search for an ε-net in the set of truncated semimetrics. Forsufficiently large R , we have

‖ρR−ρ‖m < ε

for every ρ ∈ M. Note that the universal partition from condition 2) remains universal also for all truncations ρR . Theset of truncated semimetrics will be denoted by MR .Fix a small number δ > 0 which will be specified later, and, using condition 2), find a universal δ-partition X =
X1 ∪ · · · ∪ Xk . For every function ρ ∈ MR , find an exceptional set A of measure at most δ such that diamρ(Xj \A) < δ for
j = 1, . . . , k . Put Yj = Xj \A and define a function ρ ∈ L1(X 2) on each of the sets Xi×Xj as the average of ρ over theset Yi×Yj . In the case where one of the sets Yj has zero measure, we set the value of ρ on this set equal to zero. Wewill prove that ρ is close to ρ in the space L1(X 2). First, both functions are bounded by R . Second, for any u1, u2 ∈ Yi,
v1, v2 ∈ Yj , we have the obvious inequality

|ρ(u1, v1)−ρ(u2, v2)| ≤ ρ(u1, u2) + ρ(v1, v2) < 2δ.
Hence ∫

Yi

∫
Yj

|ρ−ρ| dµ2 < 2δµ(Yi)µ(Yj ).
The union of all sets of the form Yi×Yj is exactly (X \A)2, whence

∫
X

∫
X

|ρ−ρ| dµ2 < 2δµ2(X \A) + 2Rµ(A) < 2δ (1+R),
which is small for sufficiently small δ. Thus we can approximate every function from MR by the corresponding function ρ̄with accuracy ε/2. But the set of all such functions ρ is bounded in L1(X 2) and is contained in a finite-dimensionalsubspace, so that it has a finite ε/2-net. It follows that in M we can find a finite 4ε-net with respect to the norm of thespace L1(X 2).Thus M is precompact in L1(X 2). Consider its closure M in L1(X 2). By Lemma 2.13 (the condition of this lemma holdsbecause of the uniform admissibility), all functions from M are admissible semimetrics. Thus the set M, which is compactin L1, consists of admissible semimetrics only, so that, by Corollary 2.18 of Theorem 2.17, it is compact in the m-norm.Hence the set M is precompact in the m-norm.
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Theorems 2.17, 2.19 and Lemma 2.13 easily imply the following corollary.
Corollary 2.20.
If M is a precompact set in the m-norm that consists of admissible semimetrics, then its closures in L1(X 2) and in
the m-norm coincide and consist of admissible semimetrics only. Also, ε-entropies of semimetrics in M are uniformly
bounded for any fixed ε > 0. In particular, this holds for a sequence of admissible semimetrics, converging in m-norm
(and hence by Theorem 2.17 for a sequence of admissible semimetrics, converging in L1 to admissible semimetric).

The following criterion of precompactness deals with convex sets of metrics. It is suggested by applications in ergodictheory.
Theorem 2.21.
Let M be a uniformly integrable convex family of admissible semimetrics in the space M. Then M is precompact in the
m-norm if and only if the ε-entropies of semimetrics in M are uniformly (with respect to semimetric) bounded for every
fixed ε > 0.

Proof. The precompactness of M implies the uniform boundedness of the ε-entropies, e.g., by item 2) of Theorem 2.19.Now we prove that if the ε-entropies are uniformly bounded for every ε > 0, then M is precompact in L1(X 2). Thiswill imply that M is precompact in the m-norm. Indeed, a set is precompact if and only if every sequence of elementsof this set has a Cauchy subsequence. Thus if M is precompact in L1, then every sequence of elements of M has aCauchy subsequence, which converges to a semimetric ρ in L1; since the ε-entropies are uniformly bounded, it followsfrom Lemma 2.11 that this semimetric is admissible. Then, by Theorem 2.17, the sequence converges to ρ also in thespace M.Assume that M is not precompact in L1. Then, for some c > 0, we can choose a sequence of semimetrics ρ1, ρ2, . . . in Msuch that ‖ρi−ρj‖L1 > c for all indices 1 ≤ i < j < ∞. For the moment, fix ε > 0 whose value will be specified later.Find a positive integer k such that for every metric ρ ∈ M there exists a partition of X into sets X0, X1, . . . , Xk suchthat µ(X0) < ε and |ρ(x, y)| < ε for all x, y ∈ Xi, i = 1, 2, . . . , k .Consider the semimetric ρ = (ρ1+ · · · +ρn)/n; by convexity, ρ ∈ M. The value of n will also be specified later.Consider the corresponding partition of X into sets X0, X1, . . . , Xk . Choose points pi in Xi arbitrarily for i = 1, . . . , k .For s = 1, 2, . . . , n, consider the function ds on X×X defined as
ds(x, y) = {0 if x ∈ X0 or y ∈ X0,

ρs(pi, pj ) if x ∈ Xi, y ∈ Xj , 1 ≤ i, j ≤ k.
We will estimate the sum of the L1-distances between the pairs of functions ds, ρs on X×X . The measure of the set(X0×X )∪ (X×X0) is less than 2ε; the integral over this set of each of the functions ρs does not exceed some value δ(ε)which is small provided that ε is small (this is the uniform integrability of M). On Xi×Xj we have

|ρs(x, y)−ds(x, y)| = |ρs(x, y)−ρs(pi, pj )| ≤ ρs(x, pi) +ρs(y, pj ).
We sum these inequalities over s = 1, . . . , n. In the right-hand side, the sums ∑s ρs(x, pi) = nρ(x, pi), ∑s ρs(y, pj ) =
nρ(y, pj ) appear, each not exceeding εn. Integrating over Xi×Xj and summing over all i, j = 1, 2, . . . , k yields

∑
s

∫∫
X×X

|ρs−ds| ≤ δ(ε)n+ 2εn.
Now assume that δ(ε) + 2ε < c/10. Then the estimate ‖ρs−ds‖ < c/5 holds at least for n/2 indices s.Note that all metrics ds lie in the same space L of piecewise constant functions, which has dimension k2 + 1. Besides,their norms are bounded by a constant depending only on the uniform bound on the norms of semimetrics in M. It follows
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that if n is sufficiently large, then among any n/2 of these metrics there are two, say ds, dt , with distance at most c/5from each other (indeed, otherwise the balls in L of radius c/10 centered at these functions would be disjoint and wouldlie in a ball of a bounded radius, which is impossible for large n from volume considerations; note that the bound on nhere depends only on the dimension of the space, but not on its structure). But if ‖ρs−ds‖ < c/5, ‖ρt−dt‖ < c/5,
‖ds−dt‖ < c/5, then ‖ρs−ρt‖ < c, contradicting the assumption.
Note that the criterion may be rephrased for not necessarily convex family of semimetrics: ε-entropies of all finite convexcombinations must be uniformly bounded, and if it is the case, then the family is precompact. It immediately follows fromTheorem 2.21 and the fact that a set in Banach space is precompact if and only if its convex hull is precompact. In thefollowing special case we see that even not all convex combinations are necessary for assuring in precompactness.
Theorem 2.22.
Let (X, ρ) be admissible semimetric triple, T be measure-preserving transform on X (not necessarily invertible). Denote
T kρ(x, y) = ρ(T kx, T ky) and ρav

n = n−1∑n
k=1 T kρ. Assume that for any ε > 0, ε-entropies of semimetrics ρav

n are
uniformly bounded. Then the orbit {ρ, Tρ, T 2ρ, . . . } of ρ under action of T is precompact (say, in m-norm).

Proof. Assume the contrary, then for some ε > 0 and some positive integers n1 < n2 < . . . the mutual distancesbetween metrics T niρ are not less than ε. We know from the proof of Theorem 2.21 that there exists dimension Ddepending on ε and, if n is large enough, there exists a subspace LD of dimension D such that not less than, say,
n/2 metrics T iρ, i = 1, 2, . . . , n, are ε/9-close to LD . Also, a ball of radius, say, 2 ∫ ρ + 2ε in LD has (ε/9)-net ofcardinality at most C = C (ε, ρ). Hence we may find at least n/2C indices i1 < i2 < . . . < ik ≤ n, k ≥ n/2C , such thatmutual distances between metrics T isρ do not exceed ε/3.Consider pairs of integers (a, p), where 1 ≤ a ≤ k , 1 ≤ p ≤ M, M = 5C + 1. Then all sums ia + np are less than 2n(if n is large enough), while there are more than 2n such sums. Then by pigeonhole principle there exist ia < ib and
np < nq such that ia + np = ib + nq. Hence the distance between metrics T iaρ and T ibρ coincides with the distancebetween T npρ and T nqρ, while the latter is not less than ε and the former is not greater than ε/3. A contradiction.
2.6. Matrix definitions of admissible metrics

Using Lemma 2.16, one can characterize the admissibility of (summable) metrics in terms of the behavior of the traces ofthe matrices of block averages of metrics.
Theorem 2.23.
Let ρ be a measurable summable metric defined on a Lebesgue space (X, µ). Consider a partition λ of X into n sets of
equal measure, X = ⊔n

i=1 ∆i, and construct the matrix Aρ,λ of averages of ρ over λ:

Aρ,λ(i, j) = n2 ∫
∆i×∆j

ρ dµ2.

1) If inf (trAρ,λ)/n = 0, where the infimum is taken over all n and over all partitions of X into n parts of equal measure,
then the metric ρ is admissible.2) Assume that the metric ρ is admissible and a sequence of partitions λ1, λ2, . . . satisfies the Lebesgue density theorem(i.e., for every measurable subset Y ⊂ X, for almost every point y ∈ Y , the density of Y in the element λk (y) of the
partition λk that contains y tends to 1 as k → +∞). Then

lim
k→+∞ 1

nk
trAρ,λk = 0,

where nk is the number of parts in λk . This property is satisfied, for example, for a sequence of dyadic partitions, for
partitions of an interval into equal subintervals, partitions of a square into equal rectangles, etc.

393



Geometry and dynamics of admissible metrics in measure spaces

Proof. 1) If ρ is not admissible, then, by Theorem 2.7, there exist c > 0 and a measurable set Y of measure µ(Y ) ≥ csuch that ρ(x, y) ≥ c for almost all pairs x, y ∈ Y . Put mk = µ(∆k∩Y ). Then
n2∫

∆2
k

ρ dµ2 ≥ cn2m2
k ;

summing over k yields
trAρ,λ ≥ cn2 n∑

k=1 m
2
k ≥ cn

( n∑
k=1 mk

)2
≥ c3n,

so that the infimum in question is not less than c3, a contradiction.
2) First consider arbitrary ρ and λ. Averaging the triangle inequality ρ(x, y) ≤ ρ(x, z)+ρ(y, z) over x, y ∈ ∆k , z ∈ ∆myields Aρ,λ(k, k) ≤ 2Aρ,λ(k,m). Now, averaging over the pairs k,m, we see that

1
n trAρ,λ ≤ 2‖ρ‖L1 .

This immediately implies that ∣∣∣∣ 1n trAρ,λ − 1
n trAρ′,λ∣∣∣∣ ≤ 2‖ρ−ρ′‖m.

Since every summable admissible semimetric can be approximated in the m-norm by its truncations, Lemma 2.16, itsuffices to prove the required assertion under the assumption that the semimetric ρ is bounded.Fix ε > 0 and find a partition X = ⊔N
i=0 Xi of X into a set X0 of measure less than ε and sets X1, . . . , XN of ρ-diameterless than ε. That of the sets Xi which contains y ∈ X will be denoted by X (y), by analogy with λ(y). The Lebesguedensity theorem (more exactly, its assumption) implies the following: the measure of the set of points y for which

µ(X (y)∩λk (y)) ≤ 12nk
tends to zero as k tends to infinity. Take the union of the set of such exceptional y’s with X0 and call the obtained set Y0(here Y0 depends on k and has measure < ε for large k). Put n = nk and denote the elements of the partition λk by∆1, . . . ,∆n. In ⋃n

j=1 ∆2
j ⊂ X 2 consider the set E of points (x, y) such that x ∈ Y0 or y ∈ Y0. Obviously, µ2(E) ≤ 2µ(Y0)/n.Put E1 = ⋃∆2

j \ E . Note that on E1 the semimetric ρ does not exceed ε pointwise. Indeed, let x, y ∈ ∆j , x, y /∈ Y0,
x ∈ Xi, y ∈ Xl. Then necessarily i = l, since otherwise summing up the inequalities µ (∆j∩Xs) > 1/(2n) for s = i, lleads to a contradiction. Thus∫

E1
ρ dµ2 ≤ εµ2(E1) ≤ ε

n and ∫
E

ρ dµ2 ≤ µ2(E) · diamρX ≤
2ε
n diamρX.

Adding these two inequalities and recalling that ε is arbitrary yields∫
⋃∆2

j

ρ dµ2 = o
(1
n

)
,

as required.
Let x1, . . . , xn be points chosen in X independently at random. The classification theorem [4, 14] says that a metrictriple is determined up to isomorphism by the corresponding distribution of the distance matrices ρ(xi, xj )1≤i,j≤n for all n.Therefore, the admissibility of a metric must also be expressible in terms of this distribution. Among various ways togive such a description, we confine ourselves to the following one.
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Theorem 2.24.1) If a metric ρ is not admissible, then there exists c > 0 such that the probability of the following event tends to one
as n tends to infinity:

there is a set of indices I ⊂ {1, 2, . . . , n} of cardinality
at least cn such that ρ(xi, xj ) ≥ c for all distinct i, j ∈ I.

(Pc)
2) If a metric ρ is admissible, then for every c > 0 the probability of (Pc) tends to zero.

In both cases, the rate of convergence to 1 or 0 is at least exponential in n.

Proof. 1) Find c > 0 and a measurable set Y ⊂ X of measure 2c such that ρ(x, y) ≥ c for almost all pairs x, y ∈ Y .Then on the average, Y contains 2cn points among x1, . . . , xn, and the probability that the number of such points is atmost cn tends to 0 exponentially in n (by standard large deviations estimates in the Law of Large Numbers for Bernoulliindependent summands). The probability that a pair of such points is at distance at most ε is zero. Therefore, withprobability tending to one exponentially, a required set of indices does exist.2) Let ρ be an admissible metric. Partition X into a set X0 of measure < c/2 and sets X1, . . . , XN of ρ-diameter ≤ c/2.Note that if a required set of indices I is found, then for every i = 1, . . . , N the point xk lies in Xi for at most one index
k ∈ I. Therefore, for n > 10N/c this implies that at least 2cn/3 points among x1, . . . , xn fall into X0. But, again, thishappens with probability exponentially small in n.
Remark.In conclusion of this section,we mention an important problem from the theory of metric measure spaces. We define anintegral averaging operator as follows. Let ρ ∈ L2

µ×µ(X×X ). Consider the following linear operator Iρ ≡ I:
I(f)(y) ≡ ∫

X

ρ(x, y)f(x)dµ(x),
where f ∈ L2

µ(X ). Roughly speaking, this operator measures the weighted average distance between the points of thespace.
Obviously, I is a self-adjoint Hilbert–Schmidt operator in L2

µ(X ). It is of great interest to study its spectrum and, inparticular, the leading eigenvalues. It may happen that some metric invariants of an action of a group G on X can beexpressed in terms of joint characteristics of the operator I and the unitary operators Ug, g ∈ G. Since the spectrum ofthe random distance matrix is a complete invariant of an admissible triple, it is of interest to study this spectrum andcompare it with the spectrum of the averaging operator I.
3. The dynamics and ε-entropy of admissible metrics; discreteness of the
spectrum

3.1. Scaling entropy and the statement of the discreteness criterion

The theory of admissible metrics and semimetrics which we considered in the second section, being of interest initself, also leads to new applications to ergodic theory. These applications rely on replacing the dynamics of measure-preserving transformations in the original measure spaces by the dynamics of the associated transformations in the spacesof admissible metrics. This should be compared with the transition T 7→ UT from measure-preserving transformationsto unitary operators in L2 in the early 1930s. Let T be a transformation of a Lebesgue space (X, µ) preserving themeasure µ; then we can consider the transformation RT of the cone of admissible metrics Adm (X, µ) defined by the
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formula RT (ρ)(x, y) = ρ(Tx, Ty). The set of the admissible metrics of type Rn
T (ρ)(x, y) ≡ ρn(x, y) = ρ(T nx, T ny), n ∈ Z,we called T -orbit of ρ. Introduce the averaging operator Mn = (1/n)∑n−1

k=0 Rk
T :

(Mnρ)(x, y) = 1
n

n−1∑
k=0 ρ(T kx, T ky).

It is clear that Mn sends every semimetric ρ to a new semimetric ρav
n = Mnρ, and we are interested in the study of itsproperties as n tends to infinity.In fact, we study the action of the unitary operator UT ⊗UT and averages of its powers. However, the crucial pointis that we consider this action on the cone of admissible metrics rather than simply in L1. Recall the definition of thescaling entropy of an automorphism introduced in [11, 15], see also [18].

Definition 3.1.Let T be an automorphism of a Lebesgue space (X, µ). For an arbitrary ε > 0 and an arbitrary semimetric ρ, wedefine the class of scaling sequences for the automorphism T and the semimetric ρ as the family of all nondecreasingsequences {cn} such that 0 < lim inf
n→∞

Hε(ρav
n )

cn
≤ lim sup

n→∞

Hε(ρav
n )

cn
< ∞.

All sequences in the same class are equivalent. If the limit exists, it is called the scaling ε-entropy of T with respectto the semimetric ρ and scaling sequence {cn}. Finally, if the limit of these ε-entropies as ε → 0 exists with somenormalization in ε, then it is called the scaling entropy of T (with respect to the semimetric ρ, scaling sequence andnormalization).
In the calculations performed so far in concrete examples, the latter limit does exist and does not depend on the choiceof an admissible metric. A special role is played by the class of bounded nondecreasing scaling sequences. The mainresult of this paper is the following theorem.
Theorem 3.2.
Let T be a measure-preserving automorphism of a Lebesgue space (X, µ). Then the following conditions are equivalent:1) T has a purely discrete spectrum.2) For every admissible semimetric ρ ∈ L1(X 2) and every ε > 0, the scaling sequences are bounded.3) For some admissible metric ρ ∈ L1(X 2) and every ε > 0, the scaling sequences are bounded.

Remark 3.3.By individual ergodic theorem, the limiting average semimetric
ρav = lim

n→∞
ρav
n (x, y)

does exist almost everywhere. The results of Section 2 show that it is admissible if and only if for any ε > 0 the scalingsequences of ρav
n are uniformly bounded by n (the “if” part follows from Lemma 2.13, “only if” part from Corollary 2.20).It allows to reformulate Theorem 3.2, replacing condition 2) to: For every admissible semimetric ρ ∈ L1(X 2) the limiting

average metric ρav is admissible, and analogously for condition 3).
The implication 2)⇒ 3) is trivial, and the proof of the other two ones is given below; the proof relies on the obtainedresults on admissible metrics.
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3.2. Proof of the main theorem; the implication 1)⇒ 2)

Here we use the result obtained in the second section on the precompactness of a family of admissible metrics in them-norm. Since the automorphism T has purely discrete spectrum, its tensor square T⊗2 (acting on X×X ) also haspurely discrete spectrum. It implies that the T⊗2-orbit of any function f ∈ L2(X×X ) is precompact. Take any admissiblesemimetric ρ on X . Our nearest goal is to prove that the T -orbit of ρ is precompact in L1(X×X ).Assume the contrary, then for some c > 0 and some infinite subset N ⊂ N we have ‖ρn−ρk‖ ≥ c for all distinct
n, k ∈ N. Choose large M > 0 so that ‖ρ−ρM‖ < c/3, where ρM is the truncation of ρ at level M. Since takingtruncation commutes with action of T , we get

‖ρMn −ρMk ‖ ≥ ‖ρn−ρk‖ − ‖ρn−ρMn ‖ − ‖ρk−ρMk ‖ ≥ c − c/3− c/3 = c/3
for all n, k ∈ N. Hence for a bounded metric ρM its T -orbit also has a separated infinite subset. But it belongsto L2(X×X ), hence its orbit is precompact even in L2, and so in L1. A contradiction.So we see that the T -orbit of ρ is precompact in L1, hence its closure in L1 is compact. But ρ is admissible, hence byLemma 2.13 this closure contains only admissible metrics. Then it is compact also in m-norm by Corollary 2.18. So, itsconvex hull is precompact in m-norm. Hence ε-entropies of the metrics from this convex hull are uniformly bounded byCorollary 2.20, as desired.
Remark 3.4.Actually, the following more general fact is proved. Discreteness of spectrum of T implies that ε-entropies of all convexcombinations of semimetrics in the T -orbit of a given admissible semimetric ρ are uniformly bounded (but not only foraverages over initial segments).
A typical and, by von Neumann’s classical theorem, general example of a transformation with discrete spectrum is arotation on a compact abelian group. By Remark 3.3 and already proved part of Theorem 3.2 we see that averaged(over orbit of the rotation) metric is then admissible. It is clear that instead of averaging over orbit of a rotation we canconsider the averaging over the closure of the orbit, which coincides with the whole group in the ergodic case. Below weprove the analog of this fact for general (not necessary Abelian) compact group. The proof is very similar to the aboveproof of part of Theorem 3.2. Also, we prove that an admissible rotation-invariant metric must be continuous.
Proposition 2.
For an arbitrary admissible metric ρ on a compact group G endowed with Haar measure, the average of the metric ρ with
respect to the compact subgroup of the group of translations is admissible. The average over whole group is, moreover,
invariant, and hence continuous.

Proof. Note that the map G → L1(G2), g 7→ ρg(x, y) = ρ(gx, gy), is continuous (by continuity of rotation in mean).Hence its image I is compact in L1. Then it is compact also in m-norm by Corollary 2.18. Then its convex hull isprecompact in m-norm and so ε-entropies of its elements are uniformly bounded by Corollary 2.20. The averaged metric∫
H ρgdµH (where H is a compact subgroup of G, µH is a Haar measure on H) lies in the closed (say, in L1) convex hullof I and hence is admissible by Lemma 2.13. Now we will show that the averaged metric over whole G is continuous.Since this metric is translation-invariant, it suffices to prove that it is continuous at unity. The admissibility criterion,Theorem 2.7, says that for almost all x ∈ G, the ball B = {y ∈ G : ρ(x, y) ≤ r} of radius r > 0 centered at x haspositive measure. But then by Steinhaus theorem, see, for example [9], the set B · B−1 contains a neighborhood of unity,and for every z ∈ B · B−1, by the triangle inequality and the invariance of ρ, we have ρ(1, z) ≤ 2r, which proves thatthe metric is continuous at unity.
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3.3. Proof of the implication 3)⇒ 1)

Now we will prove the implication 3)⇒ 1): if there exists an admissible metric ρ such that the corresponding classof scaling sequences consists of bounded sequences for every ε > 0, then the automorphism T has a purely discretespectrum. Clearly, one may assume that ρ is bounded by replacing it with a truncation if necessary.We use the following known criterion of discreteness of spectrum for a unitary operator U in Hilbert space: U-orbit of
any element is precompact. This is a corollary of the spectral theorem for unitary operator. Recall that a slightly moregeneral fact is true: U-orbit of x is precompact if and only if x lies in the closed span of eigenvectors of U . Finally, forthe unitary operator corresponding to the automorphism T on the Lebesgue space (X,A, µ), this closed span is a spaceof functions in L2, measurable w.r.t. some σ-subalgebra B ⊂ A (or, in other words, the space of functions, constant onalmost all parts of some measurable partition ξ). For the square-summable function of two variables f(x, y) on X×X ,the precompactness of its T -orbit {f (T nx, T ny) : n = 1, 2, . . . } therefore implies that f is measurable with respect tothe sub-algebra B2. In particular, for almost all x functions f(x, ·) are B-measurable and for almost all parts of thecorresponding partition ξ the functions f(x, ·) coincide a.e. for a.e. x from this part. Assume that it holds for the bounded(or just square summable) admissible metric f = ρ. But then for any two points u, v the functions f(u, ·) and f(v, ·) aredifferent on the ball B(u, ρ(u, v)/3), which has positive measure for almost all u by Theorem 2.7. In other words, foralmost all u there is no v such that functions f(u, ·) and f(v, ·) coincide a.e. (Such functions are called in [12] “purefunctions of two variables”, this property is important in the classification theorem.) It implies that partition ξ is trivialand so the spectrum of T is purely discrete.Now, in order to finish the proof of implication 1)⇒ 3) it suffices to combine the above general techniques and Theo-rem 2.22.
3.4. Further remarks

3.4.1. Relation to A-entropy

In [6], another discreteness criterion for the spectrum of an automorphism was proved; it is also based on the notion ofentropy (in that case, sequential, or A-, or Kirillov–Kushnirenko entropy). According to this criterion, the spectrum ofan automorphism T is discrete if and only if
lim sup
n→∞

1
n H

( n∏
k=1 T

ik ξ
) = 0 (1)

for every finite partition ξ and an arbitrary sequence i1 < i2 < . . . of positive integers. Here H(·) is the entropy of afinite partition. One can easily check that the entropy H(·) in criterion (1) can be replaced with the ε-entropy (when
ε > 0 takes all positive values). Kushnirenko’s proof is based on the following two reductions.

(I) The spectrum of T is discrete if and only if the set of partitions {T nξ : n = 1, 2, . . . } is precompact with respect tosome natural metric on partitions. Since the number of parts in the partition T nξ is fixed, various natural metricsturn out to be equivalent. For our purposes, it is convenient to consider the distance in L1 or in the m-norm betweenthe block semimetrics corresponding to partitions.(II) Such a family is precompact if and only if the normalized entropies (1) tend to zero.
The product of partitions appearing in (1) corresponds to the maximum of the associated block metrics. However, ourmain Theorem 3.2 involves averages of semimetrics. So, the precompactness criterion (II) is to be compared with ourTheorem 2.21. It is not a complete analog of Kushnirenko’s criterion: first, it applies to general admissible semimetrics;second, deals with averages rather than maxima; third, uses the entropy of metrics rather than partitions. In theparticular case, where one deals with the convex hull of a family of cut semimetrics corresponding to partitions into twoparts of equal measure, Kushnirenko’s criterion follows from the condition of criterion in Theorem 2.21. In the generalsituation, the relation between two criteria is not quite clear; for instance, we do not know any exact generalization ofKushnirenko’s criterion to the case of general semimetrics.
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3.4.2. Conjectures

The asymptotics of the scaling entropy for an arbitrary automorphism is not known. Most probably, in the other extremecase, i.e., for actions with positive Kolmogorov entropy, the answer can be obtained in the same way as in the discretespectrum case. Namely, we state the following conjecture.
Conjecture 3.5.
For any automorphism T with positive entropy, the scaling sequence has order n. In other words, for every admissible
metric ρ, lim

ε→0 lim
n→∞

Hε(ρTn )
φ(ε)n = h(T ),

where φ(ε) is a function, possibly depending on ρ, and h(T ) is the classical entropy of T .

In [15] we formulate a weaker conjecture that the equality is true for generic admissible metric. But it seems that usingShannon–McMillan–Breiman theorem it is possible to prove the above conjecture.As to zero entropy  it is not yet known what intermediate  between bounded and linear  growth the scalingsequences for automorphisms can have. Most probably, logarithmic growth with different bases can be achieved (fororicycles, adic transformations, etc.). For arbitrary groups, the growth of scaling sequences lies between bounded growthand the growth of the number of words of given length in the group. For the groups ∑∞1 Zp, examples are already foundin [11, 18] where the scaling entropy grows as an arbitrary integer power of the logarithm of the number of words ofgiven length. It is still plausible that the growth does not depend on the choice of admissible metric.However, recall that entropy characteristics are just the simplest (“unary,” or “dimensional”) invariants of the dynamicsof metrics. There are other asymptotic invariants of the sequence of average metrics with respect to automorphism.
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