Abstract
Given a convex algebra ∧0 in the tame finite-dimensional basic algebra ∧, over an algebraically closed field, we describe a special type of restriction of the generic ∧-modules.
[1] Assem I., Simson D., Skowronski A., Elements of the Representation Theory of Associative Algebras, 1, London Math. Soc. Stud. Texts, 65, Cambridge University Press, Cambridge, 2006 http://dx.doi.org/10.1017/CBO978051161430910.1017/CBO9780511614309Search in Google Scholar
[2] Bautista R., Pérez E., Salmerón L., On restrictions of indecomposables of tame algebras, Colloq. Math., 2011, 124(1), 35–60 http://dx.doi.org/10.4064/cm124-1-410.4064/cm124-1-4Search in Google Scholar
[3] Bautista R., Pérez E., Salmerón L., On generically tame algebras over perfect fields, Adv. Math., 2012, 231(1), 436–481 http://dx.doi.org/10.1016/j.aim.2012.04.02910.1016/j.aim.2012.04.029Search in Google Scholar
[4] Bautista R., Salmerón L., Zuazua R., Differential Tensor Algebras and their Module Categories, London Math. Soc. Lecture Note Ser., 362, Cambridge University Press, Cambridge, 2009 http://dx.doi.org/10.1017/CBO978113910710510.1017/CBO9781139107105Search in Google Scholar
[5] Crawley-Boevey W.W., Tame algebras and generic modules, Proc. London Math. Soc., 1991, 63(2), 241–265 http://dx.doi.org/10.1112/plms/s3-63.2.24110.1112/plms/s3-63.2.241Search in Google Scholar
[6] Drozd Yu.A., Tame and wild matrix problems, In: Representations and Quadratic Forms, 154, Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1979, 39–74 (in Russian) Search in Google Scholar
[7] Simson D., Skowronski A., Elements of the Representation Theory of Associative Algebras, 2, London Math. Soc. Stud. Texts, 71, Cambridge University Press, Cambridge, 2007 http://dx.doi.org/10.1017/CBO978051161940310.1017/CBO9780511619403Search in Google Scholar
© 2013 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.