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1. Introduction

The Korovkin theorem is the object of study of many mathematicians. In the classical Korovkin theorem [21] the uniform
convergence in C([a, b]), the space of all continuous real-valued functions defined on the compact interval [a, b], is proved
for a sequence of positive linear operators, assuming the convergence only on the test functions 1, x, x>. There are also
trigonometric versions of this theorem, with the test functions 1, sinx, cosx. One more set of test functions in abstract
contexts was suggested in [3, 4] Recently some versions of Korovkin theorems were proved in the setting of modular
spaces, which include as particular cases L”, Orlicz and Musielak-Orlicz spaces [9, 28]. Another direction is to consider
more general kinds of convergences for the operator sequence involved: for example, convergence generated by a regular
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summability matrix method, statistical and filter convergence [1, 5-8, 10, 12, 13, 18]. Some investigation was performed
in fractional and fuzzy Korovkin theory, e.g. Baskakov-type extensions of Korovkin theorems and related applications
were obtained, see for instance [5] and its bibliography. In [2] and [5] some versions of Korovkin-type theorems were
obtained for not necessarily positive operators.

In this paper we prove some Korovkin-type theorems with respect to filter convergence, introduced in [19], in the context
of modular spaces for positive linear operators whose domain is a subspace of the set of all measurable functions, defined
in topological spaces, and we consider several classes of test functions, satisfying suitable properties. Also the case of
not necessarily positive operators is considered, following an approach given in [5]. Our results extend Korovkin-type
theorems given in [8, 10, 17, 18] in the context of modular spaces and in [16] in the setting of ideal convergence. Note that
at least the results concerning positive operators can be extended to more general kinds of convergence, not necessarily
generated by free filters or regular matrix methods: among them we recall almost convergence [25]. Finally we give
some examples and applications.

2. Preliminaries

We begin with recalling some properties of the filters of N. A nonempty family F of subsets of N is called a filter of N
iff § & F, AnB € F whenever A,B € F and for each A € F and B O A we get B € F. A sequence (x,), in R is said
to be F-convergent to x € R (and we write x = (F) lim, x,) iff for every € > 0 we get {n € N: |x,—x| < €} € F. Let
x = (X,), be a sequence in R, and set

A={aeR:{neN:x, >a} ¢ 7}, Bi={beR:{neN:x, <b}¢TF}
The F-limit superior of (x,), is defined by

sup By if B, #40,

F)limsup x, =
( ) n P {—OO lf Bizﬂ

The F-limit inferior of (x,), is given by

infA, il A #0,
) liminfx, = A E AFD 2)
n too i A =0

Examples 2.1.
The filter Feonn of all subsets of N whose complement is finite is called the Fréchet filter. Note that the limit, limit
superior and limit inferior with respect to Fo, coincide with the usual ones [15].

We denote by F, the filter associated with the statistical convergence, that is the set of all subsets of N whose asymptotic
density is 1 [22].

A filter F on N is said to be free if it contains the Fréchet filter. In what follows we always deal with free filters.

3. The structural assumptions and modulars

We assume that G is a locally compact Hausdorff topological space, endowed with a uniform structure U C 2¢*¢
which generates the topology of G, see [23]. Let B be the o-algebra of all Borel subsets of G, and p: B — R be a
positive o-finite reqular measure. We denote by L°(G) the space of all real-valued p-measurable functions on G with
identification up to sets of measure p zero, by C,(G) the space of all real-valued continuous and bounded functions on G,
and by C(G) the subspace of Cp(G) of all functions with compact support on G.

Let us recall the notion of modular space [9, 28]. A functional p: L°(G) — f(g is called a modular on [°(G) if it satisfies
the following properties:
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i) p[f]=0 < f =0, p-almost everywhere on G;
it) p[—f] = p[f] for every f € L°(G);
i) plaf +bg] < plf]+ plg] for every f, g € L°(G) and for each a >0, b > 0 with a + b = 1.
A modular p is said to be convex if it satisfies conditions i), ii) and
ii') plaf +bg] < ap[f]+ bplg] for all f,g € L°(G) and for every a,b >0 with a + b =1.
Let Q > 1 be a constant. We say that a modular p is Q-quasi semiconvex if plaf] < Qap[Qf] for all f € L%(G), f >0

and0<a <1[8]
We associate to the modular p the modular space L?(G) generated by p, defined by

17(G) = {1 € 1G): lim plar) =0},

and the space of the finite elements of L°(G), defined by E*(G) = {f € L?(G) : p[Af] < +0o0 for all A > 0}.

We will use the following notions. A modular p is said to be monotone if p[f] < plg] for all f,g € L%(G) with
[f| < |g|- A modular p is finite if x4 (the characteristic function associated with A) belongs to L?(G) whenever A € B
with p(A) < +oco. A modular p is strongly finite if x4 belongs to E*(G) for all A € B with p(A) < 4+o00. A modular
p is said to be absolutely continuous if there is a positive constant a with the property: for all f € L%(G) with p[f] < +oo,

o for each € > 0 there exists a set A € B with p(A) < 400 and plafye\a] < €,

o for every € > 0 there is a 0 > 0 with p[afyg] < € for every B € B with p(B) < 0.

Example 3.1 ([9, 28]).
Let ® be the set of all continuous non-decreasing functions ¢: Rf — R with ¢(0) = 0, ¢(u) > 0 for all v > 0 and

lim, 400 @(u) = +o0 in the usual sense, and let ® be the set of all elements of ® which are convex functions. For all
@ € & (resp. ®), the functional p? defined by

polf] = [G olf()) duls),  fe L°(G), o)

is a (resp. convex) modular on [°(G) and L¥(G) = {f € L°(G) : p?[Af] < +oo for some A > 0} is the Orlicz space
generated by ¢.

We now define the modular and strong convergence in the context of the filter convergence (for the classical cases
see [9, 28)). A sequence (f,), of functions in LP(G) is F-modularly convergent to f € LP(G) if there is A > 0 with

@ lllsn plA(f,— )] = 0. (4)

Note that the F-modular convergence coincides with the usual modular convergence. A sequence (f,), in L?(G) is
F-strongly convergent to f € L?(G) if (4) holds for every A > 0. Observe that F,-strong convergence is equivalent to
usual strong convergence.

Given a subset A C L°(G) and f € L?(G), we say that f € A (that is, f is in the modular closure of A) if there is a
sequence (f,), in A such that (f,), is modularly convergent to f in the usual sense. We recall the following result.

Proposition 3.2 ([27, Theorem 1]).
Let p be a monotone, strongly finite and absolutely continuous modular on L°(G). Then C.(G) = L°(G) with respect to
the modular convergence in the ordinary sense.
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4. The main results

In this section we prove some Korovkin-type theorems with respect to an abstract finite set of test functions ey, ..., en
in the context of the filter convergence.

In [10, 17, 18] some versions of the Korovkin theorem were given, with respect to methods of convergence, generated by a
suitable non-negative reqular summability matrix A. Note that for every such method there is a filter F with the property
that the convergence generated by the matrix A is equivalent to the F-convergence, but the converse is in general not
true [20, Lemma 4, Corollary 1].

Let T be a sequence of linear operators T,,: D — L%(G), n € N, with Cy(G) C D C L°(G). Here the set D is the domain
of operators T,. We say that the sequence T, together with the modular p, satisfies the property (p)-(*) if there exist a
subset Xt € D N L?(G) with C,(G) C Xt and a positive real constant N with T,,f € L?(G) for all f € Xt and n € N, and
(F) limsup, p[t(T,f)] < Np[tf] for every f € Xt and T > 0. Some examples in which property (p)-(*) is fulfilled can be
found, for instance, in [8].

Seteg(t) =1forallt € G, lete, i=1,...,m, and a;, i =0,...,m, be functions in Cy(G). Put

m

P(t)=) ais)e(t), s teq, (5)

i=0
and suppose that Ps(t), s, t € G, satisfies the following properties:
(P1) Ps(s) =0forall s € G;
(P2) for every neighborhood U & U there is a positive real number n with P¢(t) > n whenever s,t € G, (s, t) & U.

We now give some examples of Ps for which properties (P1) and (P2) are fulfilled.

Examples 4.1.

(a) Let G = I be endowed with the usual norm |- |, where | C R is a connected set, ¢: | — R be monotone and
such that ¢~ is uniformly continuous on /. Examples of such functions are ¢(t) = t or ¢(t) = e when [ is a
bounded interval. For every t = (t;,...,t,) € G set e;(t) = ¢(t;), i =1,...,m, and e,1(t) = Y1, [(t:)]. For all
s=(s1,....5n) € G put ag(s) = Y_i4[o(s)F, ai(s) = —=2¢(s:), i =1,...,m, and a,1(s) = 1. We get

m+1 m
Pty =) ais)e(t) =) [a(s:) — p(t)].
i=0 i=1

It is readily seen that Ps(s) = 0 for all s € G, that is (P1). Moreover, by our hypotheses on ¢ and since the
norm ||- |2 is uniformly continuous, it follows that to every & > O there corresponds n > 0 with Ps(t) > n whenever
|s —tll2 > o, and so (P2) holds.

(b) (see [5, 26]) Let G = [0, a] with 0 < @ < 7/2, eq(t) = cost, ey(t) = sint, t € G. Set ag(s) = 1, a4(s) = —coss,
a,(s) = —sins, s € G. Forall s, t € G we get

P.(t) =1 —cosscost—sinssint = 1—cos(s—1).

Clearly, property (P1) holds. Moreover, it is not difficult to see that for every 0 > 0 there is n > 0 with P(t) > n
whenever s, t € G, |s—t| > 9, that is (P2) is satisfied.

(c) Let r € N be fixed, G = [0,a/r], with 0 < a < /2, t = (t1,.... t.), s = (S1,...,5;) € G, ey_q(t) = cosjt;,
ey(t) =sinjt, j=1,...,r. Put ag(s) = r, ayj_1(s) = —cosjs;, azj(s) = —sinjs;, j=1,...,r. Foralls,t € G we

have
2r

Pi(t) = Z ai(s)ei(t) =r— Zcosjs,— cos jt; — Zsinjs,- sinjt; = r — Z cos(j(s;—t))).

i=0 j=1 j=1 j=1

Arquing analogously as in (b), it is possible to check that Ps(t) satisfies (P1) and (P2).
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In order to obtain the main theorem, we begin with the following preliminary result.

Theorem 4.2.

Let p be a strongly finite, monotone and Q-quasi semiconvex modular. Assume that e; and a;, i = 0,...,m, satisfy
properties (P1) and (P2). Let T,, n € N be a sequence of positive linear operators satisfying property (p)—(x). If T,e;
is F-modularly convergent to e;, i = 0,...,m, in L?(G), then T,f is F-modularly convergent to f in LP(G) for every
f € C(QG). If T,e; is F-strongly convergent to e;, i =0,...,m, in L?(G), then T,f is F-strongly convergent to f in L?(G)
for every f € C.(G).

Proof. Letf € C.(G). Since G is endowed with the uniformity U, f is uniformly continuous and bounded on G. Fix
arbitrarily € > 0. Without loss of generality we can suppose 0 < € < 1. By uniform continuity of f there exists an
element U € U with the property that |f(s) — f(t)| < € whenever s, t € G, (s, t) € U.

Forall's, t € G let Ps(t) be as in (5), and in correspondence with U let n > 0 satisfy condition (P2). If M = sup,_ |(t)
then we get

’

2M
[f(s)—f(t)] <2M < e P (1) whenever s, te G, (s, t) ¢ U.
In any case we have |f(s) —f(t)| < € + 2MPs(t)/n for all s, t € G, that is

—8—%&(0 < f(s)—f(t)gs-l—%:os(t) forall s, teG. (6)

Since T, is a positive linear operator, by applying T, to (6), for all n € N and s € G we get

M

—&(Theo)(s) p (TaPs)(s) < £(s)(Tneo)(s) = (Taf)(s) < e(Tneo)(s) + %(RPS)(S),

and hence

[(Tuf)(s) = £(S)] < [(Taf)(s) = £(s)(Taeo)(s)| + |f(s)(Taeo)(s) — £(s)]

M
< g(T,ep)(s) + e (T, Ps)(s) + M|(T,eo)(s) — eo(s)]-
Let now y > 0. By applying the modular p, from (7) for all n € N we get
M
ply(Taf = )] < p[Bve(Theo)| + p[BYM(T,e0 — eo)] + p[6y; (T,,P(.))(~)] =h+h+h (8)

So, in order to prove the theorem, it is enough to demonstrate the existence of a positive real number y with
(F)lim, p[y(T,f—f)] = 0. Indeed, let A > 0 be such that (F)lim, p[A(T,e;—e;)] = 0 for all i = 0,..., m: such A
by hypothesis, does exist. Pick N > 0 with |a;(s)] < N for each i = 0,...,m and s € G, and let y > 0 be with
max {3yM, 6y(M/n)(m +1)N} < A. Taking into account property (P1), for all n € N we get

M M m M m
5= p[6y;(TnP(.))(-)] = p[6yF(TnP(.))(-) — P(.)(-)] < Zp[6y7(m+1)N(Tnei—ez)] < Zp[A(Tnei—e,-)].
i=0 i=0
So, () lim /3 = 0. Moreover, by the choice of A and y, it is easy to deduce that (F)limJ, = 0.

Since p is Q-quasi semiconvex and 0 < € < 1, we have

pl3yeeo] < Qep[3yQeq). 9)
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By applying the limit superior and taking into account property (p)-(*), from (8) and (9) we obtain

0 < (F) limsup p[y(T,f —1)] < (F) lim sup p[3ye(T,e0)] < Np[3yeeo] < NQep[3yQeol. (10)

From (10), by arbitrariness of € and strong finiteness of p, we get (F)limsup, p[y(T,f —f)] = 0, and hence
(F) lim,, ply(T,f —f)] = 0, by virtue of the properties of the filter limit and limit superior. This means that T,f, n € N,
is F-modularly convergent to f in L?(G). The proof of the last part of the theorem is analogous. O

We now give the main theorem of this section, which is an extension of [8, Theorem 1] and [10, Theorem 2.6].

Theorem 4.3.

Let p be a monotone, strongly finite, absolutely continuous and Q-quasi semiconvex modular on L°(G), and T,, n € N,
be a sequence of positive linear operators satisfying property (p)-(x). If T,e; is F-strongly convergenttoe;, i =0,...,m,
in L?(G), then T,f is F-modularly convergent to f in L?(G) for all f € L?(G) ND with f — C,(G) C Xy, where D and Xt
are as before.

Proof. Let f € [?(G) N D with f — Cy(G) C Xt. By Proposition 3.2, there are A > 0 and a sequence f;, k € N,
in C.(G) with p[3Af] < +o0 and llkm PIB3A(fi — )] = 0 in the usual sense. Fix arbitrarily € > 0 and pick a positive integer

k with

pBA(fr— 1] < e (11)
For all n € N we get
PIMTf = 1)] < p[BMTaf = Tof)] + p[BA(Tufe — )] + p[3A(F — )] (12)
By virtue of Theorem 4.2, we have
0=(9 l'an pBA(T,fe— )] = (F) limsup p[3A(T, fr— )] (13)
By property (p)-(*), there exists an N > 0 with
(€3] linm p[BAMT,f = T,f)] < Np[3A(f —fr)] < Ne. (14)

From (11)—(14) and subadditivity of the (J) lim sup, we obtain

0 < (9) limsup plA(T,f — )] < e(N+1). (15)

From (15) and arbitrariness of € > 0 it follows that (F) limsup, p[A(T,f —f)] = 0, and hence (F)lim, p[A(T,f —f)] = 0,
that is the assertion. O

Remarks 4.4.

Note that, in Theorem 4.3, in general it is not possible to obtain F-strong convergence unless the modular p satisfies
the A,-regularity condition, i.e. there exists a positive real number cy with p[2f] < cop[f] for every f € L°(G) (for the
classical frame see e.qg. [28]).

Using a similar technique, we can prove an analogous result in the space C,,(R) of all continuous real-valued functions
on R of period 2, by the homeomorphic identification of C,,([0, 27]) with €(S™).

Examples 4.5.
We now give some examples and applications of our results, showing that in general they are proper extensions of the
corresponding classical ones.
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(a) Let G =10,1] be endowed with the Lebesgue measure. Let ® be as in Example 3.1, and for all ¢ € ®, let p = p? be
as in (3). For every t € G, set e;(t) = t', i = 0,1,2. Note that (P1) and (P2) are fulfilled (see also Example 4.1 (a)).

Let F # Fenn be any free filter, and H be an infinite set, such that N\ H € F. Since F # Foin, then H does exist.
We consider the following linear positive operator:

M, (F)(x) = /GKn(t)f(tx)dt, neN, xeg,

for every f belonging to the domain of M,, where K,(t) = (n +1)t" if n € N\ H, K,(t) = (n +1)*t" if n € H.

Proceeding analogously as in [7], it is not difficult to check that M, satisfy all the hypotheses of Theorem 4.3.
However, for every A > 0, we get

if neN\H,

0
PAM,(e0) — eo)] = {p‘/’[)\n} § neh.

So, the sequence M,(ep), n € N, is not modularly convergent in the usual sense. Thus M, do not fulfil the classical
modular Korovkin theorem and so Theorems 4.2 and 4.3 are strict extensions of the corresponding classical ones.

(b

Let us consider bivariate Kantorovich-type operators. Let F # Fo, and H be an infinite set with the property that
N\ H € . Let G=10,17 ® be as in Example 3.1 and p = p? be as in (3). Proceeding as in [10], for every locally
integrable function f € L%(G), n € N and x,y € [0, 1] set

P g) = (17 S parsiny) [

k.j=0,....n, k-+j<n kln+1)

(k+1)/(n+1) (j+1)/(n+1)
/ f(u,v)dudyv,
J

/(n+1)

where
n!

Posi = i —k—jy ¥ YOm0 k20 Xy 20 g <t

Let (s,), be the sequence defined by s, =1 ifn € N\ H, s, =0ifn &€ H Foralln € Nand x,y >0
with x +y < 1, set Pi(f)(x,y) = s,Pa(f)(x,y). For u,v € [0,1] set ep(u,v) = 1, eq(u,v) = u, ex(u,v) = v,

es(u,v) = u? + v2. Proceeding analogously as in [10], it is possible to check that the sequence P}, n € N, satisfies
all hypotheses of Theorem 4.3, but not the classical Korovkin theorem.

5. An extension to non-positive operators

One can ask, whether it is possible, in the Korovkin theorems, to relax the positivity condition on the linear operators
involved. In [5] there are given some positive answers with respect to the statistical convergence. Following this
approach, we now give a Korovkin-type theorem for not necessarily positive linear operators, which is an extension of
[5, Theorem 9.1] to the setting of filter convergence.

Let F be any fixed free filter of N, / be a bounded interval of R, C%(/) (resp. C2(/)) be the space of all functions defined
on /, (resp. bounded and) continuous together with their first and second derivatives, €, = {f € C(/) : f > 0},
2 ={feci):f >0}

lete, i=1,...,m and a;, i = 0,...,m, be functions in @i(l), Ps(t), s,t € I, be as in (5), and suppose that Py(t)
satisfies the properties (P1), (P2) and

(P3) there is a positive real constant Gy with PZ(t) > G, for all s, t € I. (Here the second derivative is intended with
respect to t).

We now give some examples in which property (P3) is fulfilled together with (P1) and (P2).
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Examples 5.1.

(a) Note that (P3) is clearly satisfied when P,(t) = (s — t)%. (See also Example 4.1 (a)).

(b) Let / =10,log3/2], and Py(t) = (e°—e')?, s, t € I. It is easy to check that P/(t) = 4e? — 2ese! = 2e!(2e! — e°), and
so there exists Gy > 0 satisfying (P3) for all s, t € /, since e’ > 1 and 2e' —e* > 1/2for all s, t € I.

(c) Let/ =[0,a]with 0 < @ < 27, and e;, a; as in Example 4.1 (b). Then we get Ps(t) = 1—cos(s — t), P/(t) = cos(s —t),
t,s € I. Analogously as in Example 4.1 (b) it is not difficult to check that Ps(t) satisfies (P3).

We now prove the following Korovkin-type theorem for not necessarily positive linear operators.

Theorem 5.2.

Let F be any free filter of N, p be as in Theorem 4.2, and assume that e;,a;, i = 0,...,m, and Ps(t), s, t € I, satisfy
properties (P1), (P2) and (P3). Let T,, n € N, be a sequence of linear operators, satisfying property (p)-(*) with respect
to F-convergence. Suppose that {n € N: T,(C, NC2) C C,} € F. If T, e; is F-modularly convergenttoe;, i =0,...,m,
in LP(I), then T,f is F-modularly convergent to f in LP(l), for every f € C2(I). If T,e; is F-strongly convergent to e;,
i=0,...,m, inL°(l), then T,f is F-strongly convergent to f in L?(l), for every f € C%(l). Furthermore, if p is absolutely
continuous and T,e; is F-strongly convergent to e;, i = 0,...,m, in LP(l), then T,f is F-modularly convergent to f
in LP(I) for every f € LP(I) N D with f —Cy(l) C Xt.

Proof. Let f € C4(/). Note that f is uniformly continuous and bounded on /. Fix arbitrarily € > 0. Without loss
of generality we can suppose 0 < € < 1. By uniform continuity of f there exists a 0 > 0 with |[f(s) —f(t)| < € for all
s,tel |s—t| <o.

Let Ps(t), s, t € I, be as in (5), and let n > 0 be associated with 9, satisfying (P2). By arguing analogously as in the
proof of Theorem 4.2, for every B > 1 and s,t € | we get

—e— %Ps(t) < fls)—f(t) < e+ %Ps(t), (10)

where M = sup|f(t)|. From (16) it follows that
tel

hig(t) = %Ps(t)+s+f(t)—f(s) >0, (17)
hop(t) = % Py(t)+&— f(t) + f(s) > 0 (18)

forall B >1and s, t € /. Let G satisfy (P3). For each t € | we have

S 2MBGCy

" " " ZMBC
Te(t) 2 == =+ 1(0), Lalt) > =2

1.

Since f” is bounded on /, we can choose 8 > 1 in such a way that h7 g(t) > 0, h3 () > 0 for all t € /. From now on we
always consider such a choice of B. Thus hig, hag € €, NE2. Let Ky = {n € N: T,(C, N €%) C €,}: by hypothesis
we get Ky € J and

Ta(hjp)(s) >0 forall ne Ky, sel, j=1,2 (19)

From (17)—(19) and the linearity of T,, for all n € Ky and s € / we have

ST PS) + elToeal(s) +Tu1)s) = ) Toeo)l) 2 0,

% (TuP2)(s) + e(Toea)(s) — (TaF)(s) + F(s)(Toeo)(s) > O,
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and hence

—e(Tealts) = ZE (T,P)(S) < AS)Taeols) = (Tuf1(5) < elTreal(s) + 20E (TP

By proceeding similarly as in the proof of Theorem 4.2, applying the modular p and taking into account that Ky € &,
we obtain the assertion of the first part. The other parts follow by arguing analogously as in the proofs of Theorems 4.2
and 4.3. O

We give an example in which the operators involved are not necessarily positive, the hypotheses of Theorem 5.2 are
fulfilled and the classical Korovkin theorem is not satisfied.

Example 5.3.
Fix arbitrarily a free filter F # F 10, and pick an infinite set H, with the property that N\ H € F. For all f € C(0, 1))
and x €[0,1] put

T4 0] = {L’;(f)(x) if neH,

B, (f)(x) if neN\H,
where B,, n € N, denote the Bernstein polynomials
" n\ . . i
N f — L 1 _ ﬂ*lf . , ’1 ,
B =3 (7)o (L) e
and L} is defined as follows:
+oo
Li(f)(x) :/ K, (t)f(tx) dt,
0

where K, (t) = (1—=n)t"xp(t), t € [0, +00[. Asin[5, p.129], it is not difficult to check that the hypotheses of Theorem 5.2
are satisfied with respect to F-convergence. Moreover, for all n € H and x € [0,1] we have

et = [ Kuar= 12"
n\€o)IX) = A n = n+1 ,
and so the operators T, are not positive. Thus we get
T—n if neH,
To(eo)(x) =4 1 +1
1 if neN\H.

Hence for all x € [0, 1], the sequence T,(eg)(x), n € N, is not convergent in the usual sense. Thus, the classical Korovkin
theorem is not satisfied.

6. Further remarks and extensions

With suitable modifications and analogous techniques, Theorems 4.2 and 4.3 remain true even if we consider an axiomatic
abstract convergence [11, 23].

Let T be the set of all real-valued sequences (x,),. A convergence is a pair (8, ¢), where 8 is a linear subspace of T and
¢: 8 — R is a function, satisfying the following axioms:

(@) €((a1xn+ a2yn)n) = a1€((xa)n) + a2€((yn)a) for every pair of sequences (x,)n, (yn)s € S and for each aq,a, € R
(linearity).

(b) It (xn)n,(yn)n € & and x, < y, definitely (e, x, < y, n > ng, for some ny € N), then €((x,)n) < €((yn)n)
(monotonicity).
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(c) If (x,), satisfies x, = [ definitely, then (x,), € § and ¢((x,),) = L.

(d) If (x4)n € 8, then (|x,])s € 8 and £((|xa])n) = [€((Xn)n)]-

(e) Given three sequences (X,)n, (Yn)n, (Zn)n, satisfying (xn)n, (za)n € 8, €((xn)n) = 2((z4)s) and x, < y, < z, definitely,
then (y,), € 8.

Note that 8 is the space of all convergent sequences, and ¢ will be the “limit” according to this approach. Observe that

the filter convergence satisfies the above axioms (a)—(e) [11].

We now give the axiomatic definition of the operators “limit superior” and “limit inferior” related with a convergence
(8,0). Let 7,8 be as above. We define two functions ¢, £: T — R, satisfying the following axioms:

(F) 1 (Xn)n, (Yn)n € T, then £((xa)n) < €((xa)n) and 2((xs)n) = —L((—Xn)n)-
(9) If (xa)n € T, then

((xa)n) + €((yn)n) (subadditivity);
((xn)n) + €((yn)n) (superadditivity).

(91) ?((Xﬂ + yn)n)
(92) £((xo+ yn)n)

(h) If (xa)n, (yn)n € T and x, <y, definitely, then £((x,)s) < €((yn)a) and £((xa)n) < 2((yn)n) (monotonicity).

I

<
2

(i) A sequence (x,), € T belongs to § if and only if €((x,),) = £((x,)n)-

It is easy to see that the F-limit superior and the F-limit inferior defined in (1) and (2) satisfy the above axioms (f)—(i),
see [15, Theorems 3 and 4], [24, Theorem 5. We now show that these axioms are satisfied also by other kinds of
convergences. We say that a sequence (x,), in R almost converges to xo € R ((A) lim, x, = xo) if

Xm+1 + Xm+2 + o+ Xm+n
lim = Xp
n—0 n

uniformly with respect to m, see [25]. It is readily seen that almost convergence satisfies axioms (a)—(i).

A function f: R — R is said to be F-continuous at xo € R if (F)lim, f(x,) = f(xo) whenever (F)lim, x, = xo, and is
called A-continuous at xo € R if (A)lim, f(x,) = f(x) whenever (A)lim, x, = xo. In [22, Proposition 3.3] it is shown
that for every free filter F-continuity is equivalent to usual continuity, while in [14, Theorem 1] it is proved that every
A-continuous function at any fixed point xp is linear. Thus the concepts of A- and F-continuity do not coincide, and
hence almost convergence is not generated by any free filter.
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