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Abstract: We consider Sturm–Liouville differential operators on a finite interval with discontinuous potentials having one
jump. As the main result we obtain a procedure of recovering the location of the discontinuity and the height of
the jump. Using our result, we apply a generalized Rundell–Sacks algorithm of Rafler and Böckmann for a more
effective reconstruction of the potential and present some numerical examples.
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1. Introduction

This paper is devoted to the numerical solution of the inverse spectral problem for Sturm–Liouville differential operatorswith discontinuous potentials on a finite interval. Direct and inverse spectral problems with discontinuous potentials ap-pear in various problems of applied mathematics, mechanics, physics, geophysics and other branches of natural sciences.Usually such problems are connected with discontinuous material properties. The inverse problem of reconstructing thematerial properties of a medium from data collected outside of the medium is in such situations of central importance(see e.g. [5, 7, 10, 19, 21]).
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We consider the Sturm–Liouville differential equation
− y′′ + q(x)y = λy (1)

on [0, π] under different boundary conditions. As the inverse problem, the task is to determine the potential function q(x)from eigenvalues of corresponding spectral problems.We concentrate below on the Dirichlet spectrum and on the Dirichlet–Neumann spectrum. So, let us add two pairs ofboundary conditions:
y(0) = y(π) = 0, (2)
y(0) = y′(π) = 0. (3)

Denote by (µn)n>1 the sequence of eigenvalues of the boundary problem (1) & (2) and by (νn)n>0 the sequence ofeigenvalues of the boundary problem (1) & (3). The task is to recover q(x) from the given (µn)n>1 and (νn)n>0.The theory of Sturm–Liouville inverse problems has been developed fairly completely in many papers and textbooks[6, 8, 11–14]. In particular, there is a well-known classical result of Borg from which we can conclude that (µn)n>1and (νn)n>0 determine q(x) uniquely. Numerically these problems were investigated in [1, 2, 9, 18], see also referencestherein. Numerical methods for inverse Sturm–Liouville problems often make use of the fact that good numerical methodsare available for matrix inverse eigenvalue problems [3] and direct Sturm–Liouville problems [15]. A shortcoming of manynumerical techniques developed for such inverse problems is that they work satisfactory only provided the potentials tobe reconstructed are smooth. Otherwise these algorithms work ineffectively: we can observe oscillations throughout allthe interval. If the properties of the medium do suffer jump discontinuities we need some additional effort in order to geta satisfactory numerical reconstruction method. Rafler and Böckmann [16] recently proposed a generalized version ofthe Rundell–Sacks algorithm [17]; their method allows to deal with a general reference potential which can be adaptedto estimations of the jump-discontinuity points and jump heights of the unknown potential.The main goal of this work is to present a procedure that is able to recover both the point of discontinuity as well as theheight of the jump. Following which we may apply a suitable numerical method for solving the inverse problem. In ourpaper we use the generalized Rundell–Sacks algorithm [16] with a special form of the reference potential. The use ofconstant reference potentials is a feature of many numerical methods, thus they also can be adapted to use appropriatenon-constant reference potentials.We work with unknown potentials that have the special following form:
q(x) = {q1(x) + b, 0 6 x 6 a;

q1(x), a < x 6 π,
(4)

where q1(x) ∈ AC[0, π], i.e., q1(x) is an absolutely continuous function on the segment [0, π].The paper is structured as follows. In Section 2 we prove two theorems and draw a conclusion how to recover the pointof discontinuity and height of the jump. Section 3 describes the numerical algorithm. Section 4 contains some numericalexamples. In Section 5 we give a brief conclusion.
2. Recovering the point of discontinuity and the height of the jump

Let us define an auxiliary eigenvalue sequence (λn)n>1 as follows:
λ2n+1 = νn, n > 0, λ2n = µn, n > 1.

If we extend q(x) from [0, π] to [0, 2π] by q(2π− x) = q(x), x ∈ [0, π], then, it is clear that (λn)n>1 is the Dirichletspectrum for (1) on [0, 2π]. Later in this paper we will work with this spectrum for convenience.
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Recall the asymptotics for (λn)n>1 [4]:
λn = (n2

)2+ A+ cn,

where A = 1/(2π) ∫ 2π0 q(x)dx, cn = o(1), n→∞. Let (λn)n>1 be given. Then A and cn can be recovered by the formula
A = lim

n→∞
bn = lim

N→∞

2N∑
n=N

bn
N+1 ,

where bn = λn − (n/2)2 is known for all n. Let us define the following function:
pN (x) = 2πi

N+1 2N∑
n=N cnne

inx , x ∈ [0, π], (5)
with cn = λn − (n/2)2 − A.
Theorem 2.1.
The following relation holds:

pN (x) = p∗N (x) + o(1), N →∞, (6)
where

p∗N (x) = b
N+1 · ei(2N+1)(x−a) − eiN(x−a)

ei(x−a) − 1 . (7)
Proof. It is known [20] that

λn = (
n2
)2+ 12π

∫ 2π
0 q(x)[1− cosnx]dx + o( 1

n

)
, n→∞.

Using representation (4) we infer
λn = (

n2
)2+ 1

π

∫ a

0 b[1− cosnx]dx + 1
π

∫ π

0 q1(x)[1− cosnx]dx + o( 1
n

)
= (

n2
)2+ ab

π + 1
π

∫ π

0 q1(x)dx − b · sinna
πn − 1

π

∫ π

0 q1(x) cosnx dx + o( 1
n

)
.

Therefore
cn = − b sinna

πn − 1
π

∫ π

0 q1(x) cosnx dx + o( 1
n

)
.

Notice that
− 2bi
N+1 2N∑

n=N e
inx sinna = − b

N+1
[ 2N∑
n=N e

in(x+a) − 2N∑
n=N e

in(x−a)] = b
N+1

[
ei(2N+1)(x−a) − eiN(x−a)

ei(x−a) − 1 + eiN(x+a) − ei(2N+1)(x+a)
ei(x+a) − 1

]
.

Then pN (x) has the following form:
pN (x) = p∗N (x) + h1N (x) + h2N (x) + h3N (x), (8)
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where
p∗N (x) = b

N+1
[
ei(2N+1)(x−a) − eiN(x−a)

ei(x−a) − 1
]
, h1N (x) = b

N+1
[
eiN(x+a) − ei(2N+1)(x+a)

ei(x+a) − 1
]
,

h2N (x) = − 2i
N+1 2N∑

n=N ne
inx
∫ π

0 q1(y) cosnydy, h3N (x) = 2πi
N+1 2N∑

n=N εnne
inx ,

and εn satisfies lim
n→∞

nεn = 0. Let us consider
|h1N (x)| = ∣∣∣∣ b

N+1 · sin((N+1)(x+a)/2)sin((x+a)/2)
∣∣∣∣ 6 ∣∣∣∣ b

N+1
∣∣∣∣ · 1
| sin((x+a)/2)| .

As x + a ∈ (0, 2π), hence | sin((x+a)/2)| > 0. The function sin((x+a)/2) as a continuous function takes its minimumvalue on a closed interval: ∣∣∣∣sin x + a2
∣∣∣∣ > C, x ∈ [0, π],

where C is a positive constant. So, we get h1N (x) = O(1/N). Now let us consider h2N (x). Since q1(x) ∈ AC[0, π], usingthe Riemann–Lebesgue theorem, we get
|h2N (x)| 6 2

N+1 2N∑
n=N

∣∣∣∣n∫ π

0 q1(y) cosnydy∣∣∣∣ = 2
N+1 2N∑

n=N
∣∣∣∣n sinny

n q1(y)∣∣∣π0−n 1
n

∫ π

0 q′1(y) sinnydy∣∣∣∣
= 2
N+1 2N∑

n=N
∣∣∣∣∫ π

0 q′1(y) sinnydy∣∣∣∣ = o(1).
Thus, h2N (x) = o(1). Further,

|h3N (x)| = ∣∣∣∣∣ 2πi
N+1 2N∑

n=N εnne
inx

∣∣∣∣∣ 6 2π
N+1 2N∑

n=N |nεn| 6 C 2N−N
N+1 N max

N6n62N |εn|,

where C = 4π, lim
N→∞

C N
N+1N max

N6n62N |εn| = 0.
Hence, h3N (x) = o(1). Thus, using representation (8), we obtain the assertion of the theorem.
The following theorem shows how we can determine a and b.
Theorem 2.2.
Let p∗N (x) be the function defined in (7). Then

lim
N→∞

p∗N (a) = b, (9)
lim
N→∞

p∗N (x) = 0, x 6= a, (10)
where the convergence is uniform on any set [0, π] \ (a−δ, a+δ), δ > 0.
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Proof. Using the L’Hôpital’s rule we have
lim
x→a

b
N+1 · ei(2N+1)(x−a) − eiN(x−a)

ei(x−a) − 1 = lim
x→a

b
N+1 · i(2N+1)ei(2N+1)(x−a) − iNeiN(x−a)

iei(x−a) = b.

Thus, (9) is proved. Consider now
|p∗N (x)| = ∣∣∣∣ b

N+1 · sin((N+1)(x−a)/2)sin((x−a)/2)
∣∣∣∣ ·∣∣∣∣ sin((N+1)(x−a)/2)sin((x−a)/2)

∣∣∣∣ 6 1
| sin((x−a)/2)| .

Let us notice, that | sin((x−a)/2)| > 0, since we examine the case when x 6= a. Then, taking the limit we get
lim
N→∞

p∗N (x) = 0, x 6= a.

We got (10) pointwise. Now let us show the uniformness. The function sin((x−a)/2) as a continuous function takes itsminimum value on a closed interval: ∣∣∣∣sin x−a2
∣∣∣∣ > C, x ∈ [0, π] \ (a−δ, a+δ),

where C is a positive constant, δ > 0. Therefore
|p∗N (x)| 6 ∣∣∣∣ b

C (N+1)
∣∣∣∣, x ∈ [0, π] \ (a−δ, a+δ). (11)

The assertion of (10) now follows directly from (11). Theorem 2.2 is proved.
Corollary 2.3.
For all δ > 0 there exists N(δ) = Nδ such that if N > Nδ and x∗ is point of the global maximum of pN (x), then
x∗ ∈ (a−δ, a+δ).
From Corollary 2.3 the numerical algorithm of finding characteristics of discontinuity follows. Algorithm efficiencydepends on how rapidly the remainder term in (6) decreases. If the function q1(x) is smoother than it is regarded in thispaper, we can get more precise estimates. This question is certainly important and will be examined in future works.
3. Numerical algorithm

Let (µn)n>1 and (νn)n>0 be given.
Algorithm 1

1. Define (λn)n>1 as follows: λ2n+1 = νn, n > 0, λ2n = µn, n > 1.
2. Calculate A using the following formula:

A = lim
N→∞

2N∑
n=N

bn
N+1 , bn = λn −

(
n2
)2
.

3. Calculate cn = λn − (n/2)2 − A.
4. Construct the function pN (x) from eigenvalues, using (5).
5. Recover the point of discontinuity a as a global maximum of |pN (x)|.
6. Compute the approximation of the height of the jump b by b = pN (a).
7. Apply a numerical method from [16] using a reference potential with jump discontinuity b at a for reconstruction theunknown potential.
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4. Numerical examples

Let us consider
q(x) = {x(π−x) + 3, 0 6 x 6 1;

x(π−x), 1 < x 6 π.
(12)

Figure 1. The modulus of the function pN (x) for the case when q(x) has the form (12): a) corresponds to N = 17, b) corresponds to N = 19,
c) corresponds to N = 26.

a) b) c)
Notice, that using rather small values of N, we can observe the accurately allocated global maximum. This allows touse this method even if large eigenvalues are known inexactly, because of inaccuracy of measurements.
Figure 2. Line (1): reconstruction of potential (12): a) using the reference potential p(x) = (1/π) ∫ π0 q(x)dx, b) using the adapted reference potential

p(x), where we recover a = 1.0122, b = 2.9849 from pN (x), N = 19. Line (2) in both cases is an exact function (12).

a) b)
Also let us present some examples for

q(x) = {|x−1|+ 3, 0 6 x 6 2;
|x−1|, 2 < x 6 π.

(13)

Figure 3. a) |pN (x)|, where N = 22. Line (1) on b) and c): reconstruction of potential (13), b) using the reference potential p(x) = (1/π) ∫ π0 q(x)dx,
c) using the adapted reference potential p(x), where we recover a = 2.007, b = 2.989. Line (2) in both cases is an exact function (13).

a) b) c)
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Table 1. Absolute and relative errors of the reconstructed potentials

L2-error L∞-errorLine Absolute Relative Absolute RelativeFigure 2 (a), (1) 0.08927 0.45866 0.26923 1.37606Figure 2 (b), (1) 0.01014 0.05212 0.03203 0.16371Figure 3 (b), (1) 0.08541 0.44819 0.33916 1.35667Figure 3 (c), (1) 0.01391 0.07299 0.05910 0.23642

These values of N are also used as the finite numbers of eigenvalues sequences to produce the retrieved potentials.
5. Conclusion

In this paper for the first time theoretical justification of finding characteristics of discontinuity of the required potentialwas given. Also the algorithm of finding these characteristics was described. Using our procedure we can recover aand b with sufficiently good approximation and then reconstruct the potential, using the generalized Rundell–Sacksmethod. We have practically the same accuracy of this method as in cases where we know a and b a priori.
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