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Abstract: Very recently bounds for the L9 spectra of inhomogeneous self-similar measures satisfying the Inhomogeneous
Open Set Condition (IOSC), being the appropriate version of the standard Open Set Condition (OSC), were ob-
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allow an infinite number of contracting similarities and probabilities depending on positions. As an application of
the results, we provide a systematic approach to obtaining non-trivial bounds for the L7 spectra and Rényi dimen-
sion of inhomogeneous self-similar measures not satisfying the IOSC and of homogeneous ones not satisfying
the OSC. We also provide some non-trivial bounds without any separation conditions.
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1. Introduction

There is a huge body of literature (see [9] and references therein) investigating different aspects of the homogeneous
self-similar measures satisfying

N
o= pitooS;, (1)
i=1

where p; are probabilities and S;: R? — R? are contracting similarities. It is also well known (see [8] or [13], for
instance) that there exists a unique, non-empty and compact subset Ky of R? which satisfies Ky = Uf\; Si(Kjp). Such
sets are called homogeneous self-similar sets and there is a connection between them and the measures satisfying (1).
Namely, the support of yg is equal to the set Kj.

* E-mail: pliszka@us.edu.pl
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It is easily observed that a measure piy satisfying (1) can be viewed as the solution of the following equation:

N
p—Y pipoS;t=0.
i=1

This viewpoint suggests to investigate the corresponding inhomogeneous equation. Specifically, by making a simple
transformation, it would be of interest to investigate measures which are solutions of the following inhomogeneous

equation:
N

p=Y pipoS +pv, (2)
i=1
where v is a fixed probability measure on R? and its support is a compact set C C R?. Measures that satisfy (2) are
called inhomogeneous self-similar measures. Inhomogeneous self-similar measures were introduced by Barnsley et al.
in the 1980s, along with inhomogeneous self-similar sets of the form

N
K=[]JsiKjuc. 3)

i=1

These measures and sets were introduced as tools for image compression and are mentioned in various monographs (for
instance, see [4, 5] or [22]). For some examples of inhomogeneous self-similar measures, we refer the reader to [6]. It is
also worth mentioning that inhomogeneous self-similar sets (3) are closely related to the measures p that satisfy (2).
Specifically, it is proved in [19, Proposition 1.2] that the support of p is equal to the set K.

In [19] the first study of the L9 spectra and Rényi dimensions of (2), under the assumption that the sets (51K, ..., SyK, C)
are pairwise disjoint, was intiated. When examining the L7 spectra of inhomogeneous self-similar measures, the as-
sumption of the disjointness of these sets is clearly unsatisfactory. This fact was stated by the authors of [19], and they
asked (see [19, Question 2.7]) whether the results obtained in [19, Section 2.1] are true when only the Inhomogeneous
Open Set Condition (I0SC), which is the appropriate version of the standard Open Set Condition (OSC), is assumed.
In the recent paper [18], we answered this question affirmatively in relation to the main theorem of [19, Section 2.1] and
we also improved estimates from [19, Theorem 2.1].

This paper was motivated by the fact that the form of inhomogeneous self-similar measures given by (2) is a particular
case of the following measures:

WA = [ pito)duta) + puid), ()

el J57'A

where p;(x) are place dependent probabilities and the set of indexes / is at most countable. Such composition generalizes
so-called iterated function systems with probabilities depending on positions for systems consisting of contracting
similarities. It would be of interest to generalize our previous results to this more general form which has not been
studied yet in the literature (see [6, 19, 21, 22)).

In the first part of the paper we will provide estimates for the L9 spectra of inhomogeneous self-similar measures given
by (4). As a consequence, we will obtain also estimates for the Rényi dimension of (4) and, in particular, we will give a
partial answer to another question from [19], namely Question 2.13. In the second part, we will present some applications
of our results. We will try to apply the results obtained in the first part in order to go a step further and to obtain
some non-trivial estimates relaxing the assumed separability condition. Thus, we will focus on the problem of providing
non-trivial estimates for the L7 spectra and Rényi dimension of inhomogeneous and homogeneous self-similar measures
not satisfying separability conditions like the IOSC and OSC. If the OSC is not satisfied then we can find only sporadic
studies of various special classes of measures (see [10, 11, 16, 17, 24, 25]) for which something is known about the L9
spectra or other multifractal properties. For the inhomogeneous case, to the best of our knowledge, no investigation was
performed so far. In the general case, failure to meet such separability assumptions significantly impedes the calculation
of dimensions and the study of other properties. Applying our main result, we provide the first systematic approach to
obtaining non-trivial bounds for the L7 spectra and, consequently, to obtaining some non-trivial bounds for the Rényi
dimension of inhomogeneous self-similar measures that do not satisfy the IOSC. This approach will be further extended
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to homogeneous measures that do not satisfy the OSC. We also obtain some non-trivial bounds for such measures
without any separation conditions.

As an application of (4), we will turn our attention to non-linear self-similar measures. In the spirit of (4), we will present
a more general form of these measures than that introduced by Glickenstein and Strichartz [12] and considered further
in papers by Olsen and Snigireva [20]. Next, we will provide non-trivial bounds for the L7 spectra and Rényi dimension
for them. Most of our results complement the study of multifractal properties of inhomogeneous self-similar measures
from [21].

2. Preliminaries

Let (S;)ic/: R? — R? be contracting similarities and r; denote the contraction ratio of S;. We assume that the set of
indexes / is at most countable. Let C C RY be a fixed, non-empty, compact set. Our considerations are carried out under
the assumption of Inhomogeneous Open Set Condition, which, throughout the paper, will be abbreviated as I0SC. The
IOSC states: there exists a non-empty and bounded open set U such that the following conditions are satisfied.

(M ccu.

(12) SV cu,iel

13) SU)NS;(U)=0,i#jijel
(14 SU)NC=g,iel

The Open Set Condition (OSC) assumes that only the conditions (I2) and (I3) are satisfied. We will discuss relaxation
of conditions (13) and (I4) in Section 5.

It is well known (see [4] or [18]) that there exists a unique inhomogeneous self-similar set K such that

K=[]JsiKjuc. (5)

iel

K is non-empty, compact and K C U. If / is infinite then by K|, we will denote the following subset of K:
Kn=JSiK)uc, neN
i=1

Let ((p,-(x)),-g,,p): R? — [0,1] be a place dependent probability vector with positive constant probability p and let
I* = {i € I :inf,cpa pi(x) > 0}. Let also p; = sup,ga pi(x) and p; = inf,cgas pi(x). Denote by M;(RY) the space that
consists of all probability measures, i.e., let y(RY) =1 for py € M1(7]Rd). Let B(x, r) denote a closed ball with the centre
at x and the radius r, int A denote the interior of a set A, A or cL A denote the closure of A, and By denote the ¢ algebra
of the Borel subsets of X; # A stands for the cardinality of a set A and by R we mean R U cc.

3. The L9 spectra

In this section we establish the main result of this paper, apart of applications. The result gives estimates for the L9
spectra of the generalized form of inhomogeneous self-similar measures (4). To reduce the size of the paper, lemmas
and propositions in this section are mainly stated without proofs. They are generalizations of statements in [18, 19] and
their proofs can be obtained in a similar way. We start with the following theorem which generalizes [18, Theorem 4.1],
for details see [18, Section 4].
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Theorem 3.1.

Let v be a Borel probability measure with compact support C C RY, let ((pi(x))[e,,p): R? — [0,1] be a probability
vector with positive constant probability p and let (S;)ic;: R? — RY be contracting similarities. Assume thaty_,_,p; < 1.
Then, the Markov operator M: M;(R?) — M;(R?) defined by the formula

M) = 3~ [ X) dufx) + pviA)

iel

is strongly asymptotically stable. In particular, there exists a unique probability measure y that satisfies

M= [ Pt +puA) ©)

iel

The proof follows from the observation that M is contractive in the total variation norm with a ratio ) _p,.
iel

Remark.

Theorem 3.1 gives only one case in which we can show the existence of invariant measures (6), namely, when ) _,_, p; < 1.
If this assumption is not satisfied, the existence and uniqueness of such measures follows, e.g., from an argument similar
to the one in [19, Proposition 1.1].

The next theorem generalizes [19, Proposition 1.2] and [18, Theorem 4.2] for the case of the generalized form of inhomo-
geneous self-similar measures (6).

Theorem 3.2.
Let p be a unique inhomogeneous self-similar measure given by (6) and let K be a unique, non-empty, compact set
satisfying (5). Then, suppu = K.

Proof. It is enough to show that supp p satisfies (5). The inclusion supp p C |J,; Si(supp #) U C can be shown in a
similar way as in the proof of [19, Proposition 1.2]; therefore is omitted. However, for the opposite inclusion the method
from [19] is not applicable as ) ,_,; p;+ p can be greater than 1. To prove the opposite inclusion, observe that C C supp y
and hence it is enough to show that suppy C S;7"(supp ) for all i € /. Suppose the contrary, that supp y & Sﬂ(supp )

for some j € /. Then

1 = ulsuppr) = 3 [5 pi(x) du(x) + pvlsuppp) = 3 /

icl T(supp p) icl (supp )
i#j

-2 [, pix)dut) + [ p/(x) dux) + p
(supp p)Nsupp p S (supp p)Nsupp

iel

i#j

<Y [ pwaue+ | P dut) +p=1-p= [ pgdut) + | pi(x) dulx) +
i supp wa(suvpu)ﬁsuvpu supp 5,’1(sur)pu)ﬂsur>pu

i€l
i#j

o) du) + [ IOCEIORY:
7 (supp

Hence,

[ bt < [ py(x) du(x):
supp p S; (supp )Nsupp

By the above inequality it follows that supp p = SIT1 (supp p) N'supp p. It, in turn, implies suppp C Sﬂ (supp ) and we
come to a contradiction. O

From now on, we assume that /* = /. However, we will discuss the necessity of this assumption later in this section.
Let us define some functions related to the L9 spectra. Namely,
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e For g > 1, define the functions 8,(g): R — R and Bi(g): R — R by the formulas

=4 ,.Bila) _ q,Bila)
Zpt r 1' ZP

iel iel

e For g < 1, define the functions B;(g —1): R — R and B,(g — 1): R = R by the formulas

prq 1r:9/(¢7 1) =1, prq 1rlB/(q 1) -1

iel iel

A particular form of such functions was considered in [18] and [19]. If #/ = n for some n € N then we will write
B.(q), B.(q), Ba(g—1) and B,(q —1). If #/ = N then we will omit n and simply write B(q), Blq), B(g—1) and Blg—1).

Let us recall the following notation introduced in [19]: for [,m € M;(R?), g € R and A C supp m, write

(g, 1) = / (B, ) dm(),  la(g.r) = [ (B, )" dm(),
supp m supp mnN

hnaa, 1) = [ (B0, ) ()
A
From this point and forwards, we fix an inhomogeneous self-similar measure p satisfying (6).

Lemma 3.3.
Assume that the I0SC is satisfied. Then, for all ¢ € R,

(g, r) < Zﬁ’ Iu,uoslf1 ,S[K(qr r)+ pluv.clq.r), ZE! ly,poSﬂ,SI-K(qr r)+ plyvclq.r) < (g, r).

iel iel

Proof. Fixany g € R and r > 0. From (6) we have

@) €Y Pilypos 1 k(@ r) + Pluvk(@0) Y pibyos k(@) + pluvicl.r) < lu(q.r).

iel iel

The assertion follows now immediately from the fact that

Iu.uoS,‘1,K(q' r) = Iu 057!, Knsupp poS; ! (q.r) = u,uosl_1,S[K(q' r), Lk (. 1) = Ly kosuppv(G, 1) = luv,c(q,r). O

Let us introduce the following notation. For [, m € M;(R?), A C suppm and x € A, write

Jimalx, r) = Z@m(Sﬂ(B(x, r) N Sj(supp m))) + pv(B(x,r)n C),

J#i
Jemaltx,r) =Y pim (S (B(x, r) N Si(supp m))),
iel
5 , -1
Fiimalg,r) = / (I(B(x, L) ) n /,,z,A(flx, r)) dmi(x).
A ri Pi
In a similar manner we define J; ma(x,r), Lema(x, 1), Eiima(g, r) by replacing = with - in the right sides. We will simply

write Ji(x,r) if m = p and A = K in Jima(x,r). Analogously, Jo(x, r) stands for Jen,a(x,r) when m = p and A = C.
Finally, if L=m = pand A= K in Fi; (g, r) then we will simply write F;(g, r). We use the same rule for the bottom
line values.
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Now let us make an important observation. It is easily seen from (6) that under the assumption of the IOSC we have:

e Forallg>1andr >0,

-1
(ﬁlll( (5 xr—))—i-],-(x,r))q for x € SiK,

u(Blx, )"t <
(pv(B(x,r)N C) + Jel(x, r))q ! for x e C,
q—1
u(B(x, )" > ( '“((5 X *)) +lf(X'f)) for x € SiK,
(pv(Blx, 1) N C) + Je(x, 1)’ - for xeC.

e Forall g < 1 and r > 0, we have to change the inequalities to the opposite ones.

For greater clarity: in the above formulas, we have

Jixor) =Y (S (B, )N S;K)) +pv(Bx. )N ), Jele,r) =Y pu(ST(Blx.r) N SiK)).

j#i icl

Analogously, in Ji(x, r) and Jc(x, r), we have, respectively, p; and p,. Let us also introduce the following notation:

_ ot
Fevmalg,r) = /A(V(B(x,r))+ W) dm(x).

In the particular case when m = v and A = C, we simply write

< 1
Felg,r) :/C(V(B(X,r))—i—jC(P%r))q dv(x).

In the same way we denote F ¢, .4(q,r) and £ (g, r) in which we have, respectively, /¢ ,a(x, r) and Jc(x, ).

The next proposition resembles Lemma 3.3 but goes a step further.

Proposition 3.4.
Assume that the I0SC is satisfied. For all g > 1,

Y PIEdq. ) +p"Fclq.r) < l(q.r) <Y pIFilg.r)+p"Felq,r).

iel iel

IN

Forall g <1,
—q— 1 q — g1 q
E pipi Filg.n)+p'Felg,r) < l(g.r) < E pipi Eidq.r)+pTEc(q.r).

iel iel

Proof. We will provide the proof only for the right inequality “<” and for ¢ > 1. For the left inequality “<” and for
both inequalities for g < 1 the proof is similar. Fix ¢ > 1 and let r > 0. We have,

r - -1
lyost sk (G, 1) < /‘K (ﬁiu(B(Si_1X' ;) ) +11(X:f)) d(poS; ") (x)

.
:/K(m(e(x,f)) +7,—(Six,r))q du(x)
< -1
=ﬁ,~"*‘/K(u(B(x,§))+“5l,;%’))q dulx) = 3¢ Fila. )

and by using steps analogous to those above, we obtain /,, c(g,r) < p7'Fc(qg,r). Finally, applying Lemma 3.3, we
have
W@ r) <Y Pilyyos sk (@ 1)+ Plavela.r) <Y PIFilq.r) +pFelg.n). m

iel iel
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To define the L9 spectra for [, m € M;(RY), A C suppm and g € R, we set

log /m(B(x,r))q’1dm(x) log [m(B(x,r))"’1 dm(x)
Taja(g) = limsup —= “logr » Toplg) = liminf —=4 “logr '

log / I(B(x, 1)~ dm(x) log / U(B(x, 1)~ dm(x)
Tumalq) = un:jéjp e logr ' Tmald) = liin_’ionf e log r '

In particular, for [ =m = p and A = K, we obtain the upper and lower L7 spectrum of the measure p:

log /K u(B(x, 1) du(x) log /K u(B(x, )" du(x)

+ Tu(g) = liminf

T,(q) = limsup

-0 —logr —logr

Now we prove the result which plays a crucial role for the lower estimate of the L7 spectra of the measure (6).

Proposition 3.5.
Let g € R and n € N, and let p be a probability measure. Let A C supp p and assume that

(@) for all > 1, (q.1) > X_plhyald. rlr),

(b) for all g <1, hya(q,r) > 3 pp™ lyalq. riri)-

i=1

(a.1) Ifq > 1 then let t be such that B, (q) > t. Then, there exists a constant ¢ > 0 such that the function G: (0,00) — R
defined by the formula G(r) = cor™" satisfies Y _;_, B?G(r/r,-) > G(r) for all r > 0 and l‘,‘A(q,r) > G(r) for all
r € [rmn, 1].

(a-2) We have z,,(q) > B,(q).

(b.1) Ifqg < 1 then lett be such that B,(q—1) > t. Then, there exists a constant cq > 0 such that the function G: (0, c0) —
R defined by the formula G(r) = cor™" satisfies ) _|_, Biﬁiqq G(r/ri) 2 G(r) for all r > 0 and I, 4(q, r) = G(r) for
all r € [rpm, 1].

(b:2) We have 7,,(q) = B,(q —1).

The proof is quite similar to the proof of [18, Theorem 5.2] and therefore we omit it here. The key to obtaining the upper
estimate of the L7 spectra of the measure (6) is the next proposition.

Proposition 3.6.
Let y and v be probability measures, and let (tn)nen and (Vm)men be sequences of probability measures. Let K,, and
C,, denote the supports of yi,, vy, respectively, and let n € N. Assume that, for each m € N,

(a) forallq >1, Iy, k. (q, 1) < ﬁiq by k(G 1110 + Py 00 (),

M- 1M

Il
N

(b) for all <1, by k(G 7) < Y BiP? hu ki (G, 1 11) + Pl (G, 7).

i

Then,

(@.1) for all g > 1, Ty, k,(q) < max(B,(q), Ty, .c,(q)), m €N,
(b.1) for all g <1, Ty, ky (9) < max(By(g — 1), Tuvm.ca(q)), m € N.

The proof is analogous to the proof of [19, Proposition 4.2] when it is applied for each m € N.
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We are now in a position to state the main theorem of the paper. This theorem generalizes our previous main result
in [18] by providing estimates for the L7 spectra of the generalized form of inhomogeneous self-similar measures (6). As
the methods used in the work [19] cannot be applied to the case of infinitely many transformations S;, we will provide
the proof for the case in which the set of indexes / is infinite. We will observe during the proof that it is applicable if /
is finite. This observation will be formulated later as a corollary.

Theorem 3.7.
Assume that the I0SC is satisfied and that the set of indexes | is infinite.

(a) For all g > 1, we have
max (B(q), Tu(q)) < Tu(q) < max(B(q), Tu(q)),  max(B(q) T.(q)) < T4(q).
(b) For all g <1, we have
max (B(q —1).7(q)) < Tu(q) < max(B(g —1).Tu(q)),  max(B(g — 1), T.(q)) < z,(q).

Proof. The proof goes using the technique developed in the proof of [18, Theorem 5.4 We present the proof for
q = 1, the case g < 1 is analogous.

Fixany ¢ > 1 and n € N. Let (T,,)>, : R — R? be a sequence of contracting similarities of contracting ratios (t,)%,
such that lim, . t, =1, and T,,(S;K) C intS;K and T,(C) C int C. Define

Kn = g Tn(Si(K)) U T (C). )

We start by showing the lower estimate in (a). First observe that Proposition 3.4 implies /,(q, r) > BfE,v(q, r). Hence,

1

M-

by (0.7) > Y P F ik (g, 7).
i=1

From conditions (I3) and (14) of the IOSC, we conclude that, for every m € N, the sets (5/K,, ..., S,K,, C) are pairwise
disjoint. Let
Iy = min{ min _infdist(5;K,,, S;K), min _dist(5;K,, C)}.
ie{1,..n} j#Fi ie{1,..n}

Then, forall 0 < r < ry,,

n r
a2 Y o, (0.7
i=1 t

because J;, , (Six,r) = 0for 0 < r < r,. Hence, from Proposition 3.5, it follows that Iu\K,,,(Q) = B.(q). As (L,‘Km(q))mGN
is monotonic and tends to I”\’<|n(q)' we have I"\Km(q) > B,(q), n € N. Furthermore, I"\Km(q) is monotonic and tends to

7,(q). so

Tu(q) = Tu(q) = lim T, (q) 2 lim B, (q) = B(q)-

To show that 7,(q) > T,(q), ,(q) > T.(q), from Proposition 3.4, observe that /,(q, r) > p9F c(q, r). Define G, = T,(C).
By the above, l,(q,r) > p?F cv.c,(q.r). From condition (I4), for every m € N, we have r,, = inf,ey dist(S5,K, C,) > 0.
Thus, for all 0 < r < rp, I,(q,r) > pqlv‘cm(q,r), as Jepc,(x,r) = 0for 0 < r < r,. Hence, T,(q) > ?V‘Cm(q) and
74(q) 2 Tyc,(q)- The sequences (?V‘Cm(q))mEN and (IV\Cm(q))meN are monotonic and converge, respectively, to T,(q)
and 7,(q), so

Tu(q) = Tu(q), 7,4(q) = Tu(q)-

The proof of the lower estimate in (a) is finished.
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To establish the upper estimate, let K, denote the set (7). Define the sequences of measures
n(A) = u(ANK,), vn(A) = v(AN Cp), Hin(A) = (AN Kp).

Then, from the I0SC and from (6), we deduce that
pn(A) <Y Pitin 0 ST (A) + pvam(A).
i=1
Note that supp p, = K,,. From the proofs of Lemma 3.3 and Proposition 3.4,

Dok (0 7) <Y P Figpgin ki (@:7) + PO F v (G, 1)-

i=1

By (I13) and (14), for every m € N, the sets (51K, ..., S,K,,, C) are pairwise disjoint. Let

r,,,:min{ min _infdist(5;K,,, S;K), min
johi ie{1

dist(S.K, €), inf dist(SK, Cm)}.
ie(1,..n}j# 7 et n} ieN
Then, forall 0 < r < ry,
.

D ki (G 7) < Zﬁiq b b K (q, - ) + P v .c(q.1),
i=1

L

as ],v,,,,K,,,(S[x, r)= jC,u,C,,, (x,r) =0for 0 < r < r,. Hence, from Proposition 3.6, 7, ., (q) < max (En(q),?vvvmvcm(q)). As
the sequences (Tl’:i’m:Km(q))meN and (?V'V"“C'"(q))meN are monotonic and converge, respectively, to 7, «,(q) and T,(q),
we have

?u.l'\n,/qn(q) < max (En(Q),?v(Q)), neN.

Furthermore, the sequence (ﬂv,,ln,,ﬂ”(q))nEN is also monotonic and converges to T,(q). Hence, 7,(q) < max (E(q),?v(q)).
O

From the proof of Theorem 3.7 we immediately obtain the following two corollaries which generalize [18, Corollary 5.1]
and [18, Corollary 5.2] that were related to the particular form of inhomogeneous self-similar measures (2). Corollary 3.10
provides a necessary condition for existence of the dimension for all g € R.

Corollary 3.8.
Assume that the I0SC is satisfied and that the set of indexes | is finite. Then, the assertion of Theorem 3.7 is holds.

Corollary 3.9.
Assume that the set of indexes | is finite and let K be a unique, non-empty and compact set given by (5). Moreover,
assume that the sets (51K, ..., SyK, C) are pairwise disjoint. Then, the assertion of Theorem 3.7 is holds.

Corollary 3.10.
Let us take p;(x) = p; for all i € I in (6). If T,(q) = T.(q) then T,(q) = t,(q) for all g € R.

An interesting result related to phase transitions of inhomogeneous self-similar measures follows from Corollary 3.10
and it generalizes [19, Proposition 2.4] by extending its assertion to all ¢ € R and relaxing the assumed separability
condition there. However, due to the breadth of this topic we will not discuss it here. For a discussion on phase
transitions of homogeneous and inhomogeneous self-similar measures we refer the reader to [19, Section 2(3)] and [2, 7].
To satisfy interest of the reader, we will elaborate on the assumption /* =/ in the following remarks.

1313
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Remark.

If I C I then from the considerations conducted in this section it is relatively easy to deduce that in this case the
functions B,(q) and B,(g — 1) depend on the cardinality of the set /*. If I = @ then in Theorem 3.7 we have the lower
estimate by the inhomogeneous term, because p > 0. The problem occurs for all ¢ < 1, as the case of It C |/ means
that we cannot make upper estimate using p, and hence using the function 8,(g — 1). This is a separate problem for
consideration. B

Remark.

The assumption /* = | does not imply that the values B(q — 1) or B(g — 1) will be finite for all g < 1. For example, if /
is infinite, it may happen that we will have to adopt B(g —1) = oo for all ¢ < 0 (cf. [18, Example 4.2]). As a result, from
Theorem 3.7 it follows that in this case 7,(q) = T,(q) = oo for all g < 0.

Remark.

In practice, it is very convenient to assume that the probabilities satisfy the inequalities ar; < pi(x) < br;, i € |, for
some constants a,b > 0. This assumption results in the fact that /* = /, and in the case in which [/ is infinite it also
asserts the finiteness of values B(q — 1) and Blg—1) forall g < 1.

4. The Rényi dimension

The Rényi dimensions are closely related to the L9 spectra. For m € M;(R9) and g € R\ {1}, we define the upper and
lower g-Renyi dimensions of m by

log / m(B(x, r)) dm(x) log [ m(B(x, r))?"dm(x)
n T suppm S T supp m
Da(q) = limsup _— g7 o Dalg) = liminf = logr :

For more information of the Rényi dimension and its applications as a tool for analyzing various problems in information
theory, we refer the reader to [23].

We immediately obtain the following result from Theorem 3.7. This result generalizes [19, Theorem 2.8] and [19, Co-
rollary 2.9] by providing estimates of the Rényi dimension for the generalized inhomogeneous self-similar measures (6)
under the 10SC assumption. As a result, it gives a partial answer to [19, Question 2.13].

Theorem 4.1.
Assume that the I0SC is satisfied. For all g > 1,

Dy(q) < min(?fq; ,Ev(q)), min (f

Forall g <1,

-1 _ _ Bilg—1) = —1
ax (Eq(qfq),Dv(q)) < Dy(q) < max (%‘;),Dv(q))' max (Eliqfq)’Q”(q)) < ula)

The proof is immediate from Theorem 3.7 and from the fact that for all ¢ > 1, we have D,(q) = 7,(q)/(1 — q) and
D,(q) =7u(q)/(1 — q).

Remark.
It would be of interest to investigate if by using, e.g., methods from [19] and the approach from the proof of Theorem 3.7,
we are able to answer [19, Question 2.13] in relation to the two limiting cases of the Réyni dimension: ¢ = 1 and
q = %o00.
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5. Applications and examples

We begin with formulating the following theorem, which will be a starting point for further discussion in this section. In
this theorem, we obtain some non-trivial estimates of the L9 spectra of an inhomogeneous self-similar measure satis-
fying (6) without any separation conditions; in particular, we are not assuming that the conditions (I3) and (I4) are
satisfied.

Theorem 5.1.
Let p be an inhomogeneous self-similar measure (6). Assume that only conditions (I1) and (12) of the IOSC are satisfied.

e Forall g > 1, we have max (B/+(q), £,(q)) < z,(q).
o If It = then for all g <1, we have T,(q) < max(B - 1),?v(q)),

Proof. The proof follows from the idea of the proof of Theorem 3.7 and from the observations that for all ¢ > 1 and
r>0,

(Blx, )7~ > (B (S7NBlx. )N SK)) +1,(x, 1) for x € SK,
e - (B(x,

(pv(B(x,r) N C) + Lc(x,r)" for x € C,
q—1
( ( ( ))) for x € S,K,
xrﬂC for x € C,

and for allg <1 and r >0,

—1

u(Blx, 1) < (B (5 1(B“)”SK))H(X n)"" for xe€SK,
, = p v(B(x, )N C) + J ¢( ) for x € C,
-1
[l e D
B(x,r)n C)) for xeC.

Arbeiter and Patzschke [1] in 1996 computed the L9 spectra of homogeneous self-similar measures (1) satisfying the OSC
(see also [15]). Here, from Theorem 5.1 we obtain some non-trivial estimates for more general form of such measures
(in this regard see also [14]) without assuming any separation conditions; in particular, we are not assuming the OSC.

Corollary 5.2.

Let u be a homogeneous self-similar measure of the form

(A) = Z[S pi(x) dp(x)

iel

where the set of indexes | is at most countable, (S;)ic;: RY — R? are contracting similarities and (p;(x))ic;: RY — [0, 1]
is a place dependent probability vector. Assume only that there exists a non-empty and bounded open set U such that
Si(U)y C Uforalliel Forall g =1, we have B+(q) < 7,(q). If I" =1 then for all g <1, we have T,(q) < B(q —1).

In turn, the following theorem, together with its corollary, provide a systematic approach to obtaining non-trivial lower
bounds for the L7 spectra of self-similar measures not satisfying the I0SC or OSC.

1315
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Theorem 5.3.

Let u be an inhomogeneous self-similar measure of the form

uA) = Z/ pi(X) dulx) + 3 piroS;A) + pu(A),

iel jel

where the sets of indexes | and | are at most countable, (S;)ici. (S))jer: RY — RY are contracting similarities,
((p (X))iets (Pj)jes p) R? — [0,1] is a partially place dependent probability vector, and v is a probability measure
on R with compact support C. Assume that only the list ((S;)ic/, C) satisfies the I0SC with U and

e for all j € J, we have S;(U) C U,

o forall i € I, we have S;(U)NJ,, S;(U) =

i€l

Then:

e Forall g > 1, we have max (B+(q). 7.(q)) < T,(q).
e Forall g <1, we have max(B,+(q 1), zviclq )) < 7,(q), where C C C is such that C N U/E/S-(U) =

e In particular, if CNJ,., S;(U) = @ then max (B+(q — 1), Tu(q)) < T,(q). IfC Ccl Ujes Si(U) then B+ (g —1) < 7,(q).

jel

Proof. Define the probability p and the probability measure n by

p=) pj+p n=% (szuosﬂ +pv

jel jel

Then, we can write p as the following inhomogeneous self-similar measure:

M= [ o duta + ol

iel

Observe first that the inequality 7,(q) < 7,(q) for all ¢ > 1 is obvious. In turn, if C is a subset of C such that
CﬂUle] S;(U) = 0 then using the same argument as in the proof of Theorem 3.7 we obtain the inequality Tvic(q) < 7,(q)
for all g < 1. Let us denote D = (J, suppuoS/-*1 U C. By assumptions the list ((S)ie/, D) satisfies the I0SC with U
and the assertion follows at once from Theorem 3.7. O

From the proof of Theorem 5.3, we immediately obtain the following corollary.

Corollary 5.4.

Let pp be a homogeneous self-similar measure of the form

H(A) = Z/ pi(x) du(x) + Y pinoS;'(A),

i€l jel

where the sets of indexes | and J are at most countable, (S;)ic;, (S;)jer: RY — R? are contracting similarities and
((pilx)ier, (pj)jes) : R? — [0,1] is a partially place dependent probability vector. Assume that only the list (S;)ic/
satisfies the OSC with U and

e forall j € J, we have S;(U) C U,

o for all i € I, we have S;(U)nJ,, S;(U) =

el

Then for all g > 1, Bj+(q) < 1,(q) and for all g <1, Bj+(q — 1) < T,(q).
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Remark. -
From Theorems 5.1 and 5.3, Corollaries 5.2 and 5.4, and from the facts that D,(q) = 7,(q)/(1—q), D ,(q) = T.(q)/(1 —q)

for all ¢ > 1 and D,(q) = T.(q)/(1 — q), D, (q) = 7,(q)/(1 — q) for all ¢ < 1, we immediately obtain some non-trivial
estimates for the Rényt dimension of p.

We will illustrate now Corollary 5.2 and Theorem 5.3 by the following examples.

Example 5.5 (the so-called (2, 3)-Bernoulli convolution, see [11]).
Let us consider the following homogeneous self-similar measure:

3
A) = i(x) du(x),
u(A) ;/Si_wp() (v

where the maps S;,5;,55:[0,1] — R are defined by Si(x) = x/2 4+ (i — 1)/4 and p1(x): [0,1] = [0,1] = (x + 1)/3,
p2(x):[0,1] = [0,1] = (x +1)/9, p3(x): [0,1] = [0,1] = 1 — (4x + 4)/9 (the average value of p; and p; is 1/3). It is clear
that this homogeneous self-similar measure does not satisfy the OSC and the overlaps are quite severe. However, from
Corollary 5.2 we obtain the following estimates for the L7 spectra of u:

2,885 1,02, T,M(-2) $9.19.

Example 5.6.

Let us consider the following inhomogeneous self-similar measure:
2 4
A =) ]S |y P ) + > _pitoS;(A) + py(A),
i=1 75 j=3

where the maps 51, S3, S3, 54 : [0, 1] — R are defined by Si(x) = x/3 + 1/3, Sa(x) = x/3 + 2/3, S3(x) = x/4, Sa(x) = x/4
and pi(x): [0,1] = [0,1] = (x + 1)/6, p2(x): [0,1] = [0,1] = 5/12 — (x + 1)/6, and (ps,p4,p) = (1/4,1/4,1/12). Let
v = lijo13- It is clear that this inhomogeneous self-similar measure does not satisfy the I0OSC and, consequently, the L9
spectra and Rényi dimension of i can not be calculated by using the methods developed in Sections 3 and 4. However,
observe that for [ = {1,2}, / = {3,4} and U = (0,1) the assumptions of Theorem 5.3 are satisfied and hence we can
provide the following estimates for the L7 spectra and Rényi dimension of y. Namely, for, e.q., ¢ = 2, we have

—1<1,0, Dy2)<1.

To conclude these examples, it is also worth mentioning that calculating the Hausdorff dimension of the attractor of, for
instance, Sy(x) = x/3+ 1/3, Sa(x) = x/3 4+ 2/3, Ss(x) = x/4, Sa(x) = x/4 is far from being simple (see [3]). This stems
from the fact that the OSC is not satisfied.

In the spirit of the results presented in this section, we will give now some further application.
5.1. Non-linear self-similar measures

Let us consider probability measures on R? that satisfy a non-linear self-similar identity involving convolutions

N M
p=Y pioS; 4> qiuruoT ", (8)

i=1 j=1

where S;, T;: R? — RY are contractive similarities and the contraction ratios of T; are less than 1/2 (in order to counteract
the doubling of support in the convolution product p*p), and (p1,...,pn, G1. ... Gm) is a probability vector with positive
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pi and q;. These measures were studied by Glickenstein and Strichartz [12] as a generalization of homogeneous self-
similar measures and in more general form they were also a subject of investigation by Olsen and Snigireva [20]. We
now consider an even more general form of these measures. Namely, let us consider the following form of (8):

H(A) = ZI pi(x) du(x) + qu(u* (A) 9)

i€l jel I< times

where (k;);e; are positive integers with k; > 2, / and / are at most countable set of indexes, and ((p(x))ic/, (9;);e/) : R? —
[0,1] is a partially place dependent probability vector, ie, 3 .. pi(x) = 1—-3 c;q; x € RY. If sup;ri Yo, P: +
(1/2) Zjej g; < 1 then it is a simple exercise (following the proof in [13] or by an argument similar to the one in
[20, Proposition 1.1]) to show that under these hypotheses there is a unique probability measure satisfying (9).

As an application of our results, we will show that p satisfying (9) can be studied as a generalized inhomogeneous
self-similar measure. Thus, we can apply Theorem 3.7 to obtain non-trivial lower bounds for the L7 spectra and as a
consequence to obtain some non-trivial bounds for the Rényi dimension of y. Namely, a probability measure y on R?
satisfying the non-linear self-similar identity (9) can be viewed as a generalized inhomogeneous self-similar measure
as follows: define p € (0,1) and the probability measure v by

p=> a Zq,u* o

jel /E] k times

Then, clearly, p satisfying (9) can be written as

A =y / pi(x) du(x) + pviA),

iel

i.e., p is the generalized inhomogeneous self-similar measure associated with the list ((S,-),-E,, (pi(x))ien p, v). Hence, we
can now formulate the following result as a consequence of Theorem 3.7.

Theorem 5.7.
Let p be a non-linear self-similar measure satisfying the identity (9). Assume that the list (S;)ic; satisfies the OSC
with U and

o forallje ], we have T;(U+---+U)C U,
|

kj times

o foralli €1, we have SUN U, Ti(U+---+U)=4.

kj times

Then for all g > 1, B)+(q) < x,(q) and for all g <1, Bi+(q — 1) < z,(q).

Proof. It is sufficient to show that the list ((S;)ic/, supp v) satisfies the IOSC with U. Conditions (I2) and (I3) imme-
diately follow by assumption. Conditions (I1) and (14) can be shown in a similar way as in the proof of [21, Theorem 2.8]
combined with the proof of [18, Theorem 3.1], therefore, are left to the reader. O

Remark. - -
From Theorem 5.7 and from the facts that D,(q) = 7,(q)/(1 — q), D,(q) = T.(q)/(1 — q) for all ¢ > 1 and D,(q) =

T,(q)/(1 —q), D,(q) = 7,(q)/(1 — q) for all ¢ < 1, we immediately obtain some non-trivial estimates for the Rényi

dimension of p.
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