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Abstract: Very recently bounds for the Lq spectra of inhomogeneous self-similar measures satisfying the Inhomogeneous
Open Set Condition (IOSC), being the appropriate version of the standard Open Set Condition (OSC), were ob-
tained. However, if the IOSC is not satisfied, then almost nothing is known for such measures. In the paper we
study the Lq spectra and Rényi dimension of generalized inhomogeneous self-similar measures, for which we
allow an infinite number of contracting similarities and probabilities depending on positions. As an application of
the results, we provide a systematic approach to obtaining non-trivial bounds for the Lq spectra and Rényi dimen-
sion of inhomogeneous self-similar measures not satisfying the IOSC and of homogeneous ones not satisfying
the OSC. We also provide some non-trivial bounds without any separation conditions.
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1. Introduction

There is a huge body of literature (see [9] and references therein) investigating different aspects of the homogeneousself-similar measures satisfying
µ0 = N∑

i=1 piµ0 ◦S−1
i , (1)

where pi are probabilities and Si : Rd → Rd are contracting similarities. It is also well known (see [8] or [13], forinstance) that there exists a unique, non-empty and compact subset K∅ of Rd which satisfies K∅ = ⋃N
i=1 Si(K∅). Suchsets are called homogeneous self-similar sets and there is a connection between them and the measures satisfying (1).Namely, the support of µ0 is equal to the set K∅.
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The Lq spectra and Rényi dimension of generalized inhomogeneous self-similar measures

It is easily observed that a measure µ0 satisfying (1) can be viewed as the solution of the following equation:
µ −

N∑
i=1 piµ◦S

−1
i = 0.

This viewpoint suggests to investigate the corresponding inhomogeneous equation. Specifically, by making a simpletransformation, it would be of interest to investigate measures which are solutions of the following inhomogeneousequation:
µ = N∑

i=1 piµ◦S
−1
i + pν, (2)

where ν is a fixed probability measure on Rd and its support is a compact set C ⊂ Rd. Measures that satisfy (2) arecalled inhomogeneous self-similar measures. Inhomogeneous self-similar measures were introduced by Barnsley et al.in the 1980s, along with inhomogeneous self-similar sets of the form
K = N⋃

i=1Si(K ) ∪ C. (3)
These measures and sets were introduced as tools for image compression and are mentioned in various monographs (forinstance, see [4, 5] or [22]). For some examples of inhomogeneous self-similar measures, we refer the reader to [6]. It isalso worth mentioning that inhomogeneous self-similar sets (3) are closely related to the measures µ that satisfy (2).Specifically, it is proved in [19, Proposition 1.2] that the support of µ is equal to the set K .In [19] the first study of the Lq spectra and Rényi dimensions of (2), under the assumption that the sets (S1K, . . . , SNK,C )are pairwise disjoint, was intiated. When examining the Lq spectra of inhomogeneous self-similar measures, the as-sumption of the disjointness of these sets is clearly unsatisfactory. This fact was stated by the authors of [19], and theyasked (see [19, Question 2.7]) whether the results obtained in [19, Section 2.1] are true when only the InhomogeneousOpen Set Condition (IOSC), which is the appropriate version of the standard Open Set Condition (OSC), is assumed.In the recent paper [18], we answered this question affirmatively in relation to the main theorem of [19, Section 2.1] andwe also improved estimates from [19, Theorem 2.1].This paper was motivated by the fact that the form of inhomogeneous self-similar measures given by (2) is a particularcase of the following measures:

µ(A) =∑
i∈I

∫
S−1
i (A)pi(x)dµ(x) + pν(A), (4)

where pi(x) are place dependent probabilities and the set of indexes I is at most countable. Such composition generalizesso-called iterated function systems with probabilities depending on positions for systems consisting of contractingsimilarities. It would be of interest to generalize our previous results to this more general form which has not beenstudied yet in the literature (see [6, 19, 21, 22]).In the first part of the paper we will provide estimates for the Lq spectra of inhomogeneous self-similar measures givenby (4). As a consequence, we will obtain also estimates for the Rényi dimension of (4) and, in particular, we will give apartial answer to another question from [19], namely Question 2.13. In the second part, we will present some applicationsof our results. We will try to apply the results obtained in the first part in order to go a step further and to obtainsome non-trivial estimates relaxing the assumed separability condition. Thus, we will focus on the problem of providingnon-trivial estimates for the Lq spectra and Rényi dimension of inhomogeneous and homogeneous self-similar measuresnot satisfying separability conditions like the IOSC and OSC. If the OSC is not satisfied then we can find only sporadicstudies of various special classes of measures (see [10, 11, 16, 17, 24, 25]) for which something is known about the Lqspectra or other multifractal properties. For the inhomogeneous case, to the best of our knowledge, no investigation wasperformed so far. In the general case, failure to meet such separability assumptions significantly impedes the calculationof dimensions and the study of other properties. Applying our main result, we provide the first systematic approach toobtaining non-trivial bounds for the Lq spectra and, consequently, to obtaining some non-trivial bounds for the Rényidimension of inhomogeneous self-similar measures that do not satisfy the IOSC. This approach will be further extended
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to homogeneous measures that do not satisfy the OSC. We also obtain some non-trivial bounds for such measureswithout any separation conditions.As an application of (4), we will turn our attention to non-linear self-similar measures. In the spirit of (4), we will presenta more general form of these measures than that introduced by Glickenstein and Strichartz [12] and considered furtherin papers by Olsen and Snigireva [20]. Next, we will provide non-trivial bounds for the Lq spectra and Rényi dimensionfor them. Most of our results complement the study of multifractal properties of inhomogeneous self-similar measuresfrom [21].
2. Preliminaries

Let (Si)i∈I : Rd → Rd be contracting similarities and ri denote the contraction ratio of Si. We assume that the set ofindexes I is at most countable. Let C ⊂ Rd be a fixed, non-empty, compact set. Our considerations are carried out underthe assumption of Inhomogeneous Open Set Condition, which, throughout the paper, will be abbreviated as IOSC. TheIOSC states: there exists a non-empty and bounded open set U such that the following conditions are satisfied.
(I1) C ⊆ U .
(I2) Si(U) ⊆ U , i ∈ I.
(I3) Si(U) ∩ Sj (U) = ∅, i 6= j , i, j ∈ I.
(I4) Si(U) ∩ C = ∅, i ∈ I.
The Open Set Condition (OSC) assumes that only the conditions (I2) and (I3) are satisfied. We will discuss relaxationof conditions (I3) and (I4) in Section 5.It is well known (see [4] or [18]) that there exists a unique inhomogeneous self-similar set K such that

K =⋃
i∈I

Si(K ) ∪ C. (5)
K is non-empty, compact and K ⊆ U . If I is infinite then by K|n we will denote the following subset of K :

K|n = n⋃
i=1Si(K ) ∪ C, n ∈ N.

Let ((pi(x))i∈I , p) : Rd → [0, 1] be a place dependent probability vector with positive constant probability p and let
I+ = {i ∈ I : infx∈Rd pi(x) > 0}. Let also pi = supx∈Rd pi(x) and pi = infx∈Rd pi(x). Denote by M1(Rd) the space thatconsists of all probability measures, i.e., let µ(Rd) = 1 for µ ∈M1(Rd). Let B(x, r) denote a closed ball with the centreat x and the radius r, intA denote the interior of a set A, A or clA denote the closure of A, and BX denote the σ algebraof the Borel subsets of X ; #A stands for the cardinality of a set A and by R we mean R ∪∞.
3. The Lq spectra

In this section we establish the main result of this paper, apart of applications. The result gives estimates for the Lqspectra of the generalized form of inhomogeneous self-similar measures (4). To reduce the size of the paper, lemmasand propositions in this section are mainly stated without proofs. They are generalizations of statements in [18, 19] andtheir proofs can be obtained in a similar way. We start with the following theorem which generalizes [18, Theorem 4.1],for details see [18, Section 4].
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Theorem 3.1.
Let ν be a Borel probability measure with compact support C ⊂ Rd, let

((pi(x))i∈I , p) : Rd → [0, 1] be a probability
vector with positive constant probability p and let (Si)i∈I : Rd → Rd be contracting similarities. Assume that

∑
i∈I pi < 1.

Then, the Markov operator M : M1(Rd)→M1(Rd) defined by the formula

Mµ(A) =∑
i∈I

∫
S−1
i (A)pi(x)dµ(x) + pν(A)

is strongly asymptotically stable. In particular, there exists a unique probability measure µ that satisfies

µ(A) =∑
i∈I

∫
S−1
i (A)pi(x)dµ(x) + pν(A). (6)

The proof follows from the observation that M is contractive in the total variation norm with a ratio ∑
i∈I
pi.

Remark.Theorem 3.1 gives only one case in which we can show the existence of invariant measures (6), namely, when ∑i∈I pi < 1.If this assumption is not satisfied, the existence and uniqueness of such measures follows, e.g., from an argument similarto the one in [19, Proposition 1.1].
The next theorem generalizes [19, Proposition 1.2] and [18, Theorem 4.2] for the case of the generalized form of inhomo-geneous self-similar measures (6).
Theorem 3.2.
Let µ be a unique inhomogeneous self-similar measure given by (6) and let K be a unique, non-empty, compact set
satisfying (5). Then, supp µ = K.

Proof. It is enough to show that supp µ satisfies (5). The inclusion supp µ ⊆ ⋃i∈I Si(supp µ) ∪ C can be shown in asimilar way as in the proof of [19, Proposition 1.2]; therefore is omitted. However, for the opposite inclusion the methodfrom [19] is not applicable as ∑i∈I pi+p can be greater than 1. To prove the opposite inclusion, observe that C ⊆ supp µand hence it is enough to show that supp µ ⊆ S−1
i (supp µ) for all i ∈ I. Suppose the contrary, that supp µ  S−1

j (supp µ)for some j ∈ I. Then
1 = µ(supp µ) =∑

i∈I

∫
S−1
i (supp µ) pi(x)dµ(x) + pν(supp µ) =∑

i∈I
i6=j
∫
S−1
i (supp µ) pi(x)dµ(x) + ∫

S−1
j (supp µ) pj (x)dµ(x) + p

=∑
i∈I
i6=j
∫
S−1
i (supp µ)∩supp µ pi(x)dµ(x) + ∫

S−1
j (supp µ)∩supp µ pj (x)dµ(x) + p

≤
∑
i∈I
i6=j
∫

supp µ pi(x)dµ(x) + ∫
S−1
j (supp µ)∩supp µ pj (x)dµ(x) + p = 1− p − ∫supp µ pj (x)dµ(x) + ∫

S−1
j (supp µ)∩supp µ pj (x)dµ(x) + p.

Hence, ∫
supp µ pj (x)dµ(x) ≤

∫
S−1
j (supp µ)∩supp µ pj (x)dµ(x).

By the above inequality it follows that supp µ = S−1
j (supp µ) ∩ supp µ. It, in turn, implies supp µ ⊆ S−1

j (supp µ) and wecome to a contradiction.
From now on, we assume that I+ = I. However, we will discuss the necessity of this assumption later in this section.Let us define some functions related to the Lq spectra. Namely,
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• For q ≥ 1, define the functions βI(q) : R→ R and βI(q) : R→ R by the formulas
∑
i∈I

pqi r
βI (q)
i = 1, ∑

i∈I

pqi r
βI (q)
i = 1.

• For q < 1, define the functions βI(q − 1) : R→ R and βI(q − 1) : R→ R by the formulas
∑
i∈I

pip
q−1
i rβI (q−1)

i = 1, ∑
i∈I

pip
q−1
i r βI (q−1)

i = 1.
A particular form of such functions was considered in [18] and [19]. If # I = n for some n ∈ N then we will write
βn(q), βn(q), βn(q− 1) and βn(q− 1). If # I = N then we will omit n and simply write β(q), β(q), β(q− 1) and β(q− 1).Let us recall the following notation introduced in [19]: for l, m ∈M1(Rd), q ∈ R and A ⊆ supp m, write

Im(q, r) = ∫suppmm(B(x, r))q−1dm(x), Im|A(q, r) = ∫suppm∩Am(B(x, r))q−1dm(x),
Il,m,A(q, r) = ∫

A
l(B(x, r))q−1dm(x).

From this point and forwards, we fix an inhomogeneous self-similar measure µ satisfying (6).
Lemma 3.3.
Assume that the IOSC is satisfied. Then, for all q ∈ R,

Iµ(q, r) ≤∑
i∈I

pi Iµ,µ◦S−1
i ,SiK (q, r) + pIµ,ν,C (q, r), ∑

i∈I

pi Iµ,µ◦S−1
i ,SiK (q, r) + pIµ,ν,C (q, r) ≤ Iµ(q, r).

Proof. Fix any q ∈ R and r > 0. From (6) we have
Iµ(q, r) ≤∑

i∈I

pi Iµ,µ◦S−1
i ,K (q, r) + pIµ,ν,K (q, r), ∑

i∈I

pi Iµ,µ◦S−1
i ,K (q, r) + pIµ,ν,K (q, r) ≤ Iµ(q, r).

The assertion follows now immediately from the fact that
Iµ,µ◦S−1

i ,K (q, r) = Iµ,µ◦S−1
i ,K∩supp µ◦S−1

i
(q, r) = Iµ,µ◦S−1

i ,SiK (q, r), Iµ,ν,K (q, r) = Iµ,ν,K∩supp ν(q, r) = Iµ,ν,C (q, r).
Let us introduce the following notation. For l, m ∈M1(Rd), A ⊆ suppm and x ∈ A, write

Ji,m,A(x, r) = ∑
j 6=i pjm

(
S−1
j (B(x, r) ∩ Sj (suppm))) + pν(B(x, r) ∩ C ),

JC,m,A(x, r) = ∑
i∈I

pim
(
S−1
i (B(x, r) ∩ Si(suppm))),

F i,l,m,A(q, r) = ∫
A

(
l
(
B
(
x, rri

))+ Ji,l,A(Six, r)
pi

)q−1
dm(x).

In a similar manner we define J i,m,A(x, r), J C,m,A(x, r), F i,l,m,A(q, r) by replacing · with · in the right sides. We will simplywrite Ji(x, r) if m = µ and A = K in Ji,m,A(x, r). Analogously, JC (x, r) stands for JC,m,A(x, r) when m = µ and A = C .Finally, if l = m = µ and A = K in F i,l,m,A(q, r) then we will simply write F i(q, r). We use the same rule for the bottomline values.
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Now let us make an important observation. It is easily seen from (6) that under the assumption of the IOSC we have:
• For all q ≥ 1 and r > 0,

µ(B(x, r))q−1 ≤

(
piµ
(
B
(
S−1
i x, rri

))+ Ji(x, r))q−1 for x ∈ SiK,(
pν(B(x, r) ∩ C ) + JC (x, r))q−1 for x ∈ C,

µ(B(x, r))q−1 ≥

(
piµ
((

S−1
i x, rri

))+ Ji(x, r))q−1 for x ∈ SiK,(
pν(B(x, r) ∩ C ) + JC (x, r))q−1 for x ∈ C.

• For all q < 1 and r > 0, we have to change the inequalities to the opposite ones.
For greater clarity: in the above formulas, we have

Ji(x, r) = ∑
j 6=i pj µ

(
S−1
j (B(x, r) ∩ SjK )) + pν(B(x, r) ∩ C ), JC (x, r) = ∑

i∈I

piµ
(
S−1
i (B(x, r) ∩ SiK )).

Analogously, in Ji(x, r) and J C (x, r), we have, respectively, p j and p i. Let us also introduce the following notation:
FC,ν,m,A(q, r) = ∫

A

(
ν(B(x, r)) + JC,µ,A(x, r)

p

)q−1
dm(x).

In the particular case when m = ν and A = C , we simply write
FC (q, r) = ∫

C

(
ν(B(x, r)) + JC (x, r)

p

)q−1
dν(x).

In the same way we denote F C,ν,m,A(q, r) and F C (q, r) in which we have, respectively, J C,µ,A(x, r) and J C (x, r).The next proposition resembles Lemma 3.3 but goes a step further.
Proposition 3.4.
Assume that the IOSC is satisfied. For all q ≥ 1,∑

i∈I

pqi F i(q, r) + pqF C (q, r) ≤ Iµ(q, r) ≤∑
i∈I

pqi F i(q, r) + pqFC (q, r).
For all q < 1, ∑

i∈I

pip
q−1
i F i(q, r) + pqFC (q, r) ≤ Iµ(q, r) ≤∑

i∈I

pip
q−1
i F i(q, r) + pqF C (q, r).

Proof. We will provide the proof only for the right inequality “≤” and for q ≥ 1. For the left inequality “≤” and forboth inequalities for q < 1 the proof is similar. Fix q ≥ 1 and let r > 0. We have,
Iµ,µ◦S−1

i ,SiK (q, r) ≤ ∫
SiK

(
piµ
(
B
(
S−1
i x, rri

))+ Ji(x, r))q−1
d(µ◦S−1

i )(x)
= ∫

K

(
piµ
(
B
(
x, rri

))+ Ji(Six, r))q−1
dµ(x)

= pq−1
i

∫
K

(
µ
(
B
(
x, rri

))+ Ji(Six, r)
pi

)q−1
dµ(x) = pq−1

i F i(q, r)
and by using steps analogous to those above, we obtain Iµ,ν,C (q, r) ≤ pq−1FC (q, r). Finally, applying Lemma 3.3, wehave

Iµ(q, r) ≤∑
i∈I

pi Iµ,µ◦S−1
i ,SiK (q, r) + pIµ,ν,C (q, r) ≤∑

i∈I

pqi F i(q, r) + pqFC (q, r).
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To define the Lq spectra for l, m ∈M1(Rd), A ⊆ suppm and q ∈ R, we set
τm|A(q) = lim sup

r→0
log ∫

A
m(B(x, r))q−1dm(x)
− log r , τm|A(q) = lim inf

r→0
log ∫

A
m(B(x, r))q−1dm(x)
− log r ,

τl,m,A(q) = lim sup
r→0

log ∫
A
l(B(x, r))q−1dm(x)
− log r , τl,m,A(q) = lim inf

r→0
log ∫

A
l(B(x, r))q−1dm(x)
− log r .

In particular, for l = m = µ and A = K , we obtain the upper and lower Lq spectrum of the measure µ:
τµ(q) = lim sup

r→0
log ∫

K
µ(B(x, r))q−1dµ(x)
− log r , τ µ(q) = lim inf

r→0
log ∫

K
µ(B(x, r))q−1dµ(x)
− log r .

Now we prove the result which plays a crucial role for the lower estimate of the Lq spectra of the measure (6).
Proposition 3.5.
Let q ∈ R and n ∈ N, and let µ be a probability measure. Let A ⊆ supp µ and assume that

(a) for all q ≥ 1, Iµ|A(q, r) ≥ n∑
i=1p

q
i Iµ|A(q, r/ri),

(b) for all q < 1, Iµ|A(q, r) ≥ n∑
i=1pip

q−1
i Iµ|A(q, r/ri).(a.1) If q ≥ 1 then let t be such that βn(q) > t. Then, there exists a constant c0 > 0 such that the function G : (0,∞)→ R

defined by the formula G(r) = c0r−t satisfies
∑n

i=1 pqi G(r/ri) ≥ G(r) for all r > 0 and Iµ|A(q, r) ≥ G(r) for all
r ∈ [rmin, 1].(a.2) We have τ µ|A(q) ≥ βn(q).(b.1) If q < 1 then let t be such that βn(q−1) > t. Then, there exists a constant c0 > 0 such that the function G : (0,∞)→
R defined by the formula G(r) = c0r−t satisfies

∑n
i=1 pipq−1

i G(r/ri) ≥ G(r) for all r > 0 and Iµ|A(q, r) ≥ G(r) for
all r ∈ [rmin, 1].(b.2) We have τ µ|A(q) ≥ βn(q − 1).

The proof is quite similar to the proof of [18, Theorem 5.2] and therefore we omit it here. The key to obtaining the upperestimate of the Lq spectra of the measure (6) is the next proposition.
Proposition 3.6.
Let µ and ν be probability measures, and let (µm)m∈N and (νm)m∈N be sequences of probability measures. Let Km and
Cm denote the supports of µm, νm, respectively, and let n ∈ N. Assume that, for each m ∈ N,

(a) for all q ≥ 1, Iµ,µm ,Km (q, r) ≤ n∑
i=1p

q
i Iµ,µm ,Km (q, r/ri) + pqIν,νm,Cm (q, r),

(b) for all q < 1, Iµ,µm ,Km (q, r) ≤ n∑
i=1pip

q−1
i Iµ,µm ,Km (q, r/ri) + pqIν,νm ,Cm (q, r).

Then,(a.1) for all q ≥ 1, τµ,µm,Km (q) ≤ max(βn(q), τν,νm,Cm (q)), m ∈ N,(b.1) for all q < 1, τµ,µm,Km (q) ≤ max(βn(q − 1), τν,νm,Cm (q)), m ∈ N.

The proof is analogous to the proof of [19, Proposition 4.2] when it is applied for each m ∈ N.
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We are now in a position to state the main theorem of the paper. This theorem generalizes our previous main resultin [18] by providing estimates for the Lq spectra of the generalized form of inhomogeneous self-similar measures (6). Asthe methods used in the work [19] cannot be applied to the case of infinitely many transformations Si, we will providethe proof for the case in which the set of indexes I is infinite. We will observe during the proof that it is applicable if Iis finite. This observation will be formulated later as a corollary.
Theorem 3.7.
Assume that the IOSC is satisfied and that the set of indexes I is infinite.(a) For all q ≥ 1, we have

max(β(q), τν(q)) ≤ τµ(q) ≤ max(β(q), τν(q)), max(β(q), τ ν(q)) ≤ τ µ(q).
(b) For all q < 1, we have

max(β(q − 1), τν(q)) ≤ τµ(q) ≤ max(β(q − 1), τν(q)), max(β(q − 1), τ ν(q)) ≤ τ µ(q).
Proof. The proof goes using the technique developed in the proof of [18, Theorem 5.4]. We present the proof for
q > 1, the case q < 1 is analogous.Fix any q > 1 and n ∈ N. Let (Tm)∞m=1 : Rd → Rd be a sequence of contracting similarities of contracting ratios (tm)∞m=1such that limm→∞ tm = 1, and Tm(SiK ) ⊂ intSiK and Tm(C ) ⊂ intC . Define

Km = n⋃
i=1 Tm(Si(K )) ∪ Tm(C ). (7)

We start by showing the lower estimate in (a). First observe that Proposition 3.4 implies Iµ(q, r) ≥ n∑
i=1p

q
i F i(q, r). Hence,

Iµ|Km (q, r) ≥ n∑
i=1 p

q
i F i,µ,Km (q, r).

From conditions (I3) and (I4) of the IOSC, we conclude that, for every m ∈ N, the sets (S1Km, . . . , SnKm, C ) are pairwisedisjoint. Let
rm = min{ min

i∈{1,...,n} inf
j 6=i dist(SiKm, SjK ), min

i∈{1,...,n} dist(SiKm, C )}.
Then, for all 0 < r < rm,

Iµ|Km (q, r) ≥ n∑
i=1 p

q
i Iµ|Km

(
q, rri

)
because J i,µ,Km (Six, r) = 0 for 0 < r < rm. Hence, from Proposition 3.5, it follows that τ µ|Km (q) > βn(q). As (τ µ|Km (q))m∈Nis monotonic and tends to τ µ|K|n (q), we have τ µ|K|n (q) ≥ βn(q), n ∈ N. Furthermore, τ µ|K|n (q) is monotonic and tends to
τ µ(q), so

τµ(q) > τ µ(q) = lim
n→∞

τ µ|K|n(q) ≥ lim
n→∞

βn(q) = β(q).
To show that τµ(q) > τν(q), τµ(q) > τ ν(q), from Proposition 3.4, observe that Iµ(q, r) ≥ pqF C (q, r). Define Cm = Tm(C ).By the above, Iµ(q, r) ≥ pqF C,ν,Cm (q, r). From condition (I4), for every m ∈ N, we have rm = infi∈N dist(SiK,Cm) > 0.Thus, for all 0 < r < rm, Iµ(q, r) ≥ pqIν |Cm (q, r), as J C,µ,Cm (x, r) = 0 for 0 < r < rm. Hence, τµ(q) ≥ τν |Cm (q) and
τ µ(q) ≥ τ ν |Cm (q). The sequences (τν |Cm (q))m∈N and (τ ν |Cm (q))m∈N are monotonic and converge, respectively, to τµ(q)and τ µ(q), so

τµ(q) ≥ τν(q), τ µ(q) ≥ τ ν(q).
The proof of the lower estimate in (a) is finished.
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To establish the upper estimate, let Km denote the set (7). Define the sequences of measures
µm(A) = µ(A ∩ Km), νm(A) = ν(A ∩ Cm), µ|n(A) = µ(A ∩ K|n).

Then, from the IOSC and from (6), we deduce that
µm(A) ≤ n∑

i=1 piµm ◦S
−1
i (A) + pνm(A).

Note that supp µm = Km. From the proofs of Lemma 3.3 and Proposition 3.4,
Iµ,µm ,Km (q, r) ≤ n∑

i=1 p
q
i F i,µ,µm ,Km (q, r) + pqFC,ν,νm,Cm (q, r).

By (I3) and (I4), for every m ∈ N, the sets (S1Km, . . . , SnKm, C ) are pairwise disjoint. Let
rm = min{ min

i∈{1,...,n} inf
j 6=i dist(SiKm, SjK ), min

i∈{1,...,n} dist(SiKm, C ), inf
i∈N

dist(SiK,Cm)}.
Then, for all 0 < r < rm,

Iµ,µm ,Km (q, r) ≤ n∑
i=1 p

q
i Iµ,µm ,Km

(
q, rri

)+ pqIν,νm ,Cm (q, r),
as Ji,µ,Km (Six, r) = JC,µ,Cm (x, r) = 0 for 0 < r < rm. Hence, from Proposition 3.6, τµ,µm ,Km (q) ≤ max(βn(q), τν,νm ,Cm (q)). Asthe sequences (τµ,µm ,Km (q))m∈N and (τν,νm,Cm (q))m∈N are monotonic and converge, respectively, to τµ,µ|n,K|n (q) and τν(q),we have

τµ,µ|n,K|n (q) ≤ max(βn(q), τν(q)), n ∈ N.

Furthermore, the sequence (τµ,µ|n,K|n (q))n∈N is also monotonic and converges to τµ(q). Hence, τµ(q) ≤ max(β(q), τν(q)).
From the proof of Theorem 3.7 we immediately obtain the following two corollaries which generalize [18, Corollary 5.1]and [18, Corollary 5.2] that were related to the particular form of inhomogeneous self-similar measures (2). Corollary 3.10provides a necessary condition for existence of the dimension for all q ∈ R.
Corollary 3.8.
Assume that the IOSC is satisfied and that the set of indexes I is finite. Then, the assertion of Theorem 3.7 is holds.

Corollary 3.9.
Assume that the set of indexes I is finite and let K be a unique, non-empty and compact set given by (5). Moreover,
assume that the sets (S1K, . . . , SNK,C ) are pairwise disjoint. Then, the assertion of Theorem 3.7 is holds.

Corollary 3.10.
Let us take pi(x) = pi for all i ∈ I in (6). If τν(q) = τ ν(q) then τµ(q) = τ µ(q) for all q ∈ R.

An interesting result related to phase transitions of inhomogeneous self-similar measures follows from Corollary 3.10and it generalizes [19, Proposition 2.4] by extending its assertion to all q ∈ R and relaxing the assumed separabilitycondition there. However, due to the breadth of this topic we will not discuss it here. For a discussion on phasetransitions of homogeneous and inhomogeneous self-similar measures we refer the reader to [19, Section 2 (3)] and [2, 7].To satisfy interest of the reader, we will elaborate on the assumption I+ = I in the following remarks.
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Remark.If I+ ( I then from the considerations conducted in this section it is relatively easy to deduce that in this case thefunctions βI(q) and βI(q − 1) depend on the cardinality of the set I+. If I+ = ∅ then in Theorem 3.7 we have the lowerestimate by the inhomogeneous term, because p > 0. The problem occurs for all q < 1, as the case of I+ ( I meansthat we cannot make upper estimate using pi and hence using the function βI(q − 1). This is a separate problem forconsideration.
Remark.The assumption I+ = I does not imply that the values β(q − 1) or β(q − 1) will be finite for all q < 1. For example, if Iis infinite, it may happen that we will have to adopt β(q− 1) =∞ for all q < 0 (cf. [18, Example 4.2]). As a result, fromTheorem 3.7 it follows that in this case τ µ(q) = τµ(q) =∞ for all q < 0.
Remark.In practice, it is very convenient to assume that the probabilities satisfy the inequalities ari ≤ pi(x) ≤ bri, i ∈ I, forsome constants a, b > 0. This assumption results in the fact that I+ = I, and in the case in which I is infinite it alsoasserts the finiteness of values β(q − 1) and β(q − 1) for all q < 1.
4. The Rényi dimension

The Rényi dimensions are closely related to the Lq spectra. For m ∈M1(Rd) and q ∈ R\{1}, we define the upper and
lower q-Renyi dimensions of m by

Dm(q) = lim sup
r→0

1
q − 1

log ∫suppmm(B(x, r))q−1dm(x)
log r , Dm(q) = lim inf

r→0 1
q − 1

log ∫suppmm(B(x, r))q−1dm(x)
log r .

For more information of the Rényi dimension and its applications as a tool for analyzing various problems in informationtheory, we refer the reader to [23].We immediately obtain the following result from Theorem 3.7. This result generalizes [19, Theorem 2.8] and [19, Co-rollary 2.9] by providing estimates of the Rényi dimension for the generalized inhomogeneous self-similar measures (6)under the IOSC assumption. As a result, it gives a partial answer to [19, Question 2.13].
Theorem 4.1.
Assume that the IOSC is satisfied. For all q > 1,

Dµ(q) ≤ min( βI(q)1− q ,Dν(q)), min( βI(q)1− q ,D ν(q)) ≤ D µ(q) ≤ min( βI(q)1− q ,D ν(q)).
For all q < 1,

max(βI(q − 1)1− q ,Dν(q)) ≤ Dµ(q) ≤ max(βI(q − 1)1− q ,Dν(q)), max(βI(q − 1)1− q ,D ν(q)) ≤ D µ(q).
The proof is immediate from Theorem 3.7 and from the fact that for all q > 1, we have Dµ(q) = τ µ(q)/(1 − q) and
D µ(q) = τµ(q)/(1− q).
Remark.It would be of interest to investigate if by using, e.g., methods from [19] and the approach from the proof of Theorem 3.7,we are able to answer [19, Question 2.13] in relation to the two limiting cases of the Réyni dimension: q = 1 and
q = ±∞.
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5. Applications and examples

We begin with formulating the following theorem, which will be a starting point for further discussion in this section. Inthis theorem, we obtain some non-trivial estimates of the Lq spectra of an inhomogeneous self-similar measure satis-fying (6) without any separation conditions; in particular, we are not assuming that the conditions (I3) and (I4) aresatisfied.
Theorem 5.1.
Let µ be an inhomogeneous self-similar measure (6). Assume that only conditions (I1) and (I2) of the IOSC are satisfied.

• For all q > 1, we have max(βI+ (q), τ ν(q)) 6 τ µ(q).
• If I+ = I then for all q < 1, we have τµ(q) 6 max(β(q − 1), τν(q)).
Proof. The proof follows from the idea of the proof of Theorem 3.7 and from the observations that for all q > 1 and
r > 0,

µ(B(x, r))q−1 >

{(
piµ
(
S−1
i (B(x, r) ∩ SiK )) + J i(x, r))q−1 for x ∈ SiK,(

pν(B(x, r) ∩ C ) + J C (x, r))q−1 for x ∈ C,

>


(
piµ
(
B
(
S−1
i x, rri

)))q−1 for x ∈ SiK,(
pν(B(x, r) ∩ C ))q−1 for x ∈ C,

and for all q < 1 and r > 0,
µ(B(x, r))q−1 6

{(
piµ
(
S−1
i (B(x, r) ∩ SiK )) + J i(x, r))q−1 for x ∈ SiK,(

pν(B(x, r) ∩ C ) + J C (x, r))q−1 for x ∈ C,

6


(
piµ
(
B
(
S−1
i x, rri

)))q−1 for x ∈ SiK,(
pν(B(x, r) ∩ C ))q−1 for x ∈ C.

Arbeiter and Patzschke [1] in 1996 computed the Lq spectra of homogeneous self-similar measures (1) satisfying the OSC(see also [15]). Here, from Theorem 5.1 we obtain some non-trivial estimates for more general form of such measures(in this regard see also [14]) without assuming any separation conditions; in particular, we are not assuming the OSC.
Corollary 5.2.
Let µ be a homogeneous self-similar measure of the form

µ(A) =∑
i∈I

∫
S−1
i (A) pi(x)dµ(x),

where the set of indexes I is at most countable, (Si)i∈I : Rd → Rd are contracting similarities and (pi(x))i∈I : Rd → [0, 1]
is a place dependent probability vector. Assume only that there exists a non-empty and bounded open set U such that
Si(U) ⊆ U for all i ∈ I. For all q > 1, we have βI+ (q) 6 τ µ(q). If I+ = I then for all q < 1, we have τµ(q) 6 β(q − 1).
In turn, the following theorem, together with its corollary, provide a systematic approach to obtaining non-trivial lowerbounds for the Lq spectra of self-similar measures not satisfying the IOSC or OSC.
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Theorem 5.3.
Let µ be an inhomogeneous self-similar measure of the form

µ(A) = ∑
i∈I

∫
S−1
i (A) pi(x)dµ(x) +∑

j∈J

piµ◦S−1
j (A) + pν(A),

where the sets of indexes I and J are at most countable, (Si)i∈I , (Sj )j∈I : Rd → Rd are contracting similarities,((pi(x))i∈I , (pj )j∈J , p) : Rd → [0, 1] is a partially place dependent probability vector, and ν is a probability measure
on Rd with compact support C. Assume that only the list

((Si)i∈I , C) satisfies the IOSC with U and

• for all j ∈ J, we have Sj (U) ⊆ U,
• for all i ∈ I, we have Si(U) ∩⋃j∈J Sj (U) = ∅.
Then:

• For all q > 1, we have max(βI+ (q), τ ν(q)) 6 τ µ(q).
• For all q < 1, we have max(βI+ (q − 1), τ ν |C (q)) 6 τ µ(q), where C ⊆ C is such that C ∩

⋃
j∈J Sj (U) = ∅.

• In particular, if C ∩
⋃
j∈J Sj (U) = ∅ then max(βI+ (q−1), τ ν(q)) 6 τ µ(q). If C ⊆ cl ⋃j∈J Sj (U) then βI+ (q−1) 6 τ µ(q).

Proof. Define the probability ρ and the probability measure η by
ρ =∑

j∈J

pj + p, η = 1
ρ

(∑
j∈J

piµ◦S−1
j + pν

)
.

Then, we can write µ as the following inhomogeneous self-similar measure:
µ(A) =∑

i∈I

∫
S−1
i (A) pi(x)dµ(x) + ρη(A).

Observe first that the inequality τ ν(q) 6 τη(q) for all q > 1 is obvious. In turn, if C is a subset of C such that
C∩
⋃
j∈J Sj (U) = ∅ then using the same argument as in the proof of Theorem 3.7 we obtain the inequality τ ν |C (q) 6 τη(q)for all q < 1. Let us denote D = ⋃

j∈J supp µ◦S−1
j ∪ C . By assumptions the list ((Si)i∈I , D) satisfies the IOSC with Uand the assertion follows at once from Theorem 3.7.

From the proof of Theorem 5.3, we immediately obtain the following corollary.
Corollary 5.4.
Let µ be a homogeneous self-similar measure of the form

µ(A) = ∑
i∈I

∫
S−1
i (A) pi(x)dµ(x) +∑

j∈J

piµ◦S−1
j (A),

where the sets of indexes I and J are at most countable, (Si)i∈I , (Sj )j∈I : Rd → Rd are contracting similarities and((pi(x))i∈I , (pj )j∈J) : Rd → [0, 1] is a partially place dependent probability vector. Assume that only the list (Si)i∈I
satisfies the OSC with U and

• for all j ∈ J, we have Sj (U) ⊆ U,
• for all i ∈ I, we have Si(U) ∩⋃j∈J Sj (U) = ∅.
Then for all q > 1, βI+ (q) 6 τ µ(q) and for all q < 1, βI+ (q − 1) 6 τ µ(q).
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Remark.From Theorems 5.1 and 5.3, Corollaries 5.2 and 5.4, and from the facts that Dµ(q) = τ µ(q)/(1−q), D µ(q) = τµ(q)/(1−q)for all q > 1 and Dµ(q) = τµ(q)/(1 − q), D µ(q) = τ µ(q)/(1 − q) for all q < 1, we immediately obtain some non-trivialestimates for the Rényi dimension of µ.
We will illustrate now Corollary 5.2 and Theorem 5.3 by the following examples.
Example 5.5 (the so-called (2, 3)-Bernoulli convolution, see [11]).Let us consider the following homogeneous self-similar measure:

µ(A) = 3∑
i=1
∫
S−1
i (A) pi(x) dµ(x),

where the maps S1, S2, S3 : [0, 1] → R are defined by Si(x) = x/2 + (i − 1)/4 and p1(x) : [0, 1] → [0, 1] = (x + 1)/3,
p2(x) : [0, 1]→ [0, 1] = (x + 1)/9, p3(x) : [0, 1]→ [0, 1] = 1− (4x + 4)/9 (the average value of pi and pi is 1/3). It is clearthat this homogeneous self-similar measure does not satisfy the OSC and the overlaps are quite severe. However, fromCorollary 5.2 we obtain the following estimates for the Lq spectra of µ:

−2, 88 / τ µ(2), τµ(−2) / 9, 19.
Example 5.6.Let us consider the following inhomogeneous self-similar measure:

µ(A) = 2∑
i=1
∫
S−1
i (A) pi(x)dµ(x) + 4∑

j=3 piµ◦S
−1
j (A) + pν(A),

where the maps S1, S2, S3, S4 : [0, 1]→ R are defined by S1(x) = x/3 + 1/3, S2(x) = x/3 + 2/3, S3(x) = x/4, S4(x) = x/4and p1(x) : [0, 1] → [0, 1] = (x + 1)/6, p2(x) : [0, 1] → [0, 1] = 5/12 − (x + 1)/6, and (p3, p4, p) = (1/4, 1/4, 1/12). Let
ν = l1|[0,1/3]. It is clear that this inhomogeneous self-similar measure does not satisfy the IOSC and, consequently, the Lqspectra and Rényi dimension of µ can not be calculated by using the methods developed in Sections 3 and 4. However,observe that for I = {1, 2}, J = {3, 4} and U = (0, 1) the assumptions of Theorem 5.3 are satisfied and hence we canprovide the following estimates for the Lq spectra and Rényi dimension of µ. Namely, for, e.g., q = 2, we have

−1 ≤ τ µ(2), Dµ(2) ≤ 1.
To conclude these examples, it is also worth mentioning that calculating the Hausdorff dimension of the attractor of, forinstance, S1(x) = x/3 + 1/3, S2(x) = x/3 + 2/3, S3(x) = x/4, S4(x) = x/4 is far from being simple (see [3]). This stemsfrom the fact that the OSC is not satisfied.In the spirit of the results presented in this section, we will give now some further application.
5.1. Non-linear self-similar measures

Let us consider probability measures on Rd that satisfy a non-linear self-similar identity involving convolutions
µ = N∑

i=1 piµ◦S
−1
i + M∑

j=1 qj (µ∗µ)◦T−1
j , (8)

where Si, Tj : Rd → Rd are contractive similarities and the contraction ratios of Tj are less than 1/2 (in order to counteractthe doubling of support in the convolution product µ∗µ), and (p1, . . . , pN , q1, . . . , qM ) is a probability vector with positive
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pi and qj . These measures were studied by Glickenstein and Strichartz [12] as a generalization of homogeneous self-similar measures and in more general form they were also a subject of investigation by Olsen and Snigireva [20]. Wenow consider an even more general form of these measures. Namely, let us consider the following form of (8):
µ(A) = ∑

i∈I

∫
S−1
i (A) pi(x)dµ(x) +∑

j∈J

qj (µ ∗ · · · ∗ µ︸ ︷︷ ︸
kj times

)◦T−1
j (A), (9)

where (kj )j∈J are positive integers with kj ≥ 2, I and J are at most countable set of indexes, and ((pi(x))i∈I , (qj )j∈J) : Rd →[0, 1] is a partially place dependent probability vector, i.e., ∑i∈I pi(x) = 1 −∑j∈J qj , x ∈ Rd. If supi ri∑i∈I pi +(1/2)∑j∈J qj < 1 then it is a simple exercise (following the proof in [13] or by an argument similar to the one in[20, Proposition 1.1]) to show that under these hypotheses there is a unique probability measure satisfying (9).As an application of our results, we will show that µ satisfying (9) can be studied as a generalized inhomogeneousself-similar measure. Thus, we can apply Theorem 3.7 to obtain non-trivial lower bounds for the Lq spectra and as aconsequence to obtain some non-trivial bounds for the Rényi dimension of µ. Namely, a probability measure µ on Rdsatisfying the non-linear self-similar identity (9) can be viewed as a generalized inhomogeneous self-similar measureas follows: define p ∈ (0, 1) and the probability measure ν by
p =∑

j∈J

qj , ν = 1
p
∑
j∈J

qj (µ ∗ · · · ∗ µ︸ ︷︷ ︸
kj times

)◦T−1
j .

Then, clearly, µ satisfying (9) can be written as
µ(A) =∑

i∈I

∫
S−1
i (A) pi(x)dµ(x) + pν(A),

i.e., µ is the generalized inhomogeneous self-similar measure associated with the list ((Si)i∈I , (pi(x))i∈I , p, ν). Hence, wecan now formulate the following result as a consequence of Theorem 3.7.
Theorem 5.7.
Let µ be a non-linear self-similar measure satisfying the identity (9). Assume that the list (Si)i∈I satisfies the OSC
with U and

• for all j ∈ J, we have Tj (U + · · ·+ U)︸ ︷︷ ︸
kj times

⊆ U,

• for all i ∈ I, we have SiU ∩
⋃
j∈J Tj (U + · · ·+ U︸ ︷︷ ︸

kj times

) = ∅.
Then for all q ≥ 1, βI+ (q) ≤ τ µ(q) and for all q < 1, βI+ (q − 1) ≤ τ µ(q).
Proof. It is sufficient to show that the list ((Si)i∈I , supp ν) satisfies the IOSC with U . Conditions (I2) and (I3) imme-diately follow by assumption. Conditions (I1) and (I4) can be shown in a similar way as in the proof of [21, Theorem 2.8]combined with the proof of [18, Theorem 3.1], therefore, are left to the reader.
Remark.From Theorem 5.7 and from the facts that Dµ(q) = τ µ(q)/(1 − q), D µ(q) = τµ(q)/(1 − q) for all q > 1 and Dµ(q) =
τµ(q)/(1 − q), D µ(q) = τ µ(q)/(1 − q) for all q < 1, we immediately obtain some non-trivial estimates for the Rényidimension of µ.
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