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Abstract: The isochoric thermal conductivity of an orientationally-disordered phase of CCl4
is analysed within a model in which heat is transferred by phonons and above the phonon
mobility edge by ”diffusive” modes migrating randomly from site to site. The mobility edge ω0 is
found from the condition that the phonon mean-free path cannot become smaller than half the
phonon wavelength. The contributions of phonon-phonon, one-, and two-phonon scattering to
the total thermal resistance of solid CCl4 are calculated under the assumption that the different
scattering mechanisms contribute additively. An increase in the isochoric thermal conductivity
with temperature is explained by suppression of phonon scattering at rotational excitations due
to a decrease in correlation in the rotation of neighbouring molecules.
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1 Introduction

Theoretical models of heat transfer in solid dielectrics have predicted the thermal conduc-

tivity behaviour Λ ∝ 1/T at temperatures T ≥ ΘD (ΘD is the Debye temperature) [1].

However, the thermal conductivity of molecular crystals shows considerable deviations

from the above dependence [2–5]. At present, there is no generally accepted theory that
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would adequately describe the experimental thermal conductivity of molecular crystals

in the high temperature region. Essentially all of the basic concepts of heat transfer

were created mainly on the basis of studies of the simplest crystalline structure: atomic

crystals. Therefore, features typical for molecular crystals were not taken into account in

them. One of these features that can affect the temperature dependence of the thermal

conductivity is translation-rotation coupling. In molecular crystals the heat transfer is

determined by both the translational and rotational motions of molecules at the lattice

sites. As the temperature rises, the rotational motion of the molecules in crystals can

have basically the following stages: an increase in the libration amplitude, jump-like re-

orientation of the molecules, increasing frequency of reorientations, hindered rotations

of the molecules, and, finally, nearly free rotation of the molecules. A consequence of

strong rotation-translation coupling is to lead to additional phonon scattering. It should

be noted that the additional factor which can determine the temperature dependence of

the thermal conductivity at T ≥ ΘD also causes the thermal conductivity to approach

its lower limit [4].

The purpose of this paper was to study basic features of heat transfer in the ori-

entationally disordered (OD) phase of CCl4. Our previous measurements have revealed

an increase of isochoric thermal conductivity of solid CCl4 above 200 K (in “normal”

and OD phases) [5]. The effect was explained qualitatively but we did not provide a

quantitative interpretation. The present work continues the investigation of the observed

phenomenon. In the current study we analyzed the temperature dependence of isochoric

thermal conductivity of CCl4 in the OD phase by using a model that assumed that

the heat is transferred by low-frequency phonons, above the mobility edge by “diffusive”

modes, and taking into account phonon-phonon and phonon-rotation scattering.

2 The object

Carbon tetrachloride has an interesting feature: on cooling to 250.3 K liquid CCl4 crys-

tallizes into a face-centred cubic (fcc) form (Ia) with four molecules per unit cell, which at

a further decrease in temperature by some number of degrees transforms into a rhombo-

hedral phase (Ib) with 21 molecules per unit cell [6, 7]. Below 225.5 K the rhombohedral

phase transforms into a monoclinic one in the space symmetry group C2/c − (C6
2h) with

Z=32. On heating, the low-temperature phase (II) always changes to the rhombohedral

form. Because of low entropy of melting ΔSf/R =1.21, the phase (Ib) of CCl4 may be

classified as ”plastic” [8].

The three forms of solid CCl4 are closely related. The centres of mass of the molecules

are only slightly shifted relative to their positions in the cubic and rhombohedral phases.

Besides which, the molecular orientations in the phase (II) correlate closely with the di-

rections of the highest-density distribution function in the phase (I). According to exper-

imental data, the character of the molecular motion in the plastic phase of CCl4 is closely

similar to that in the liquid state. For example, for CCl4 no discontinuities are observed

in the curve of spin-spin relaxation time T2 of 35Cl on melting of the plastic phase [9] and
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in the curve of the reorientational correlation time obtained from Raman line broadening

[10, 11]. Zuk, Kiefte, and Clouter estimated the elastic constants of CCl4 in the phase

(I) by the Brillouin scattering method [12]. They detected an anomalously high (as com-

pared to solid inert gases) ratio of sound velocities in the < 110 > and < 111 > directions

and interpreted this as an indication of a strong translation-orientation interaction.

The thermal conductivity of solid CCl4 had been measured at constant pressure in

the temperature range 80-250 K [5, 13] and on several isochores above 200 K [14].

3 Model

An important common feature of simple molecular crystals is that in the condensed phases

the intramolecular vibration frequencies (∼1000 cm−1) exceed by an order of magni-

tude the intermolecular ones (the corresponding lattice-mode frequencies are below∼100

cm−1), so they can be treated independently. In such an approximation each molecule

participates in two types of motion: translational, when the molecular center of mass

shifts, and rotational, when the center of mass rests. In general, translational and orien-

tational motions are not independent of one another, but rather they occur as coupled

translational - orientational vibrations [15–17].

In consequence of the complexity of description of such motion, a simplified model

where the translational and orientational subsystem are described independently is often

used [18–20]. In such a description it is assumed that the translational-orientational inter-

action results in a renormalization of the dispersion law and, correspondingly, the sound

velocities. There are few theoretical works dedicated to influence of rotational motion

on heat transfer in molecular crystals [21–24]. It has been universally accepted that the

heat in molecular crystals is transferred by phonons, which are scattered by phonon-

phonon and, additionally, by phonon-rotational interactions. In the orientationally-

ordered phases of molecular crystals the rotational excitations are a collective phenomenon

(librons) [18]. If only three-quasiparticle scattering is taken into account and the phonon

mean-free path exceeds the phonon wavelength, the 1/T law should be asserted at T ≥ ΘD

[21]. In the orientationally-disordered phases, however, the absence of the long-range ori-

entational ordering suggests that well-defined librational modes cannot propagate in a

crystal. Nevertheless, a short-range cooperative orientational motion of molecules pre-

vails immediately above the phase transition in the OD phase, and it is damped out

with increasing temperature [22–24]. If the phonon-rotational scattering decreases more

rapidly then the phonon-phonon scattering increases, the thermal conductivity can grow.

The present calculations were performed on the basis of the standard Debye expression

for thermal conductivity [1]:

Λ =
kB

2π2υ2

ωD∫

0

l(ω)ω2dω, (1)

where υ is the polarization-averaged sound velocity, l (ω) is the phonon mean-free path,

ωD is the Debye frequency (ωD = (6π2)
1/3υ/a), and a is the lattice constant.
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We assumed that the heat transfer in molecular crystals at T ≥ ΘD is determined by

phonon-phonon and phonon-rotational interactions, and that the phonon-rotation relax-

ation time is described by one- and two-phonon scattering processes [22, 23]. Then, l (ω),

the combined phonon mean-free path, can be written as:

lΣ (ω) =
∑

i

(
li (ω)−1

)−1
, (2)

To explain the behavior of the thermal conductivity in the orientationally disordered

phases of solid methane and deuteromethane, the authors of [22] used the analogy be-

tween molecular and spin systems [25]. In a number of magnetic crystals the thermal

conductivity was observed to increase above the magnetic phase transition. Reason for

these anomalies is the scattering of phonons by critical fluctuations of the short-range

magnetic order above the Neel point. In orientationally disordered phases of the molecu-

lar crystals an increase of the isochoric thermal conductivity with increasing temperature

is due to weakening of phonon scattering by fluctuations of the short-range orientational

order. By existing analogy, using the equations for one- and two-phonon relaxation times

[22], the phonon mean free path of each of the examined scattering mechanisms can be

expressed as:

lu (ω) = υ
/

ATω2, (3)

lI (ω) = ρυ5
/

B2ΛrotTω2, (4)

lII (ω) = πρ2υ8
/

C2kBCrotT
2ω4, (5)

A =
18π3

√
2

kBγ2

ma2ω3
D

, (6)

where the Grüneisen parameter γ = − (∂ ln ΘD/∂ ln V )T , lu (ω) is the phonon mean-free

path determined by U -processes, lI (ω) and lII (ω) are the phonon mean-free paths for

one and two-phonon scattering, respectively, m is the average atomic (molecular) weight,

B and C are the constants of non central intermolecular interactions, Λrot is the thermal

conductivity of the orientational subsystem, and Crot is the rotational heat capacity per

unit volume. In the first approximation: B = C2 [22]. The coefficient B can be found

from the pressure dependence of the orientational ordering temperature:

B = −
(

1

χT

)
∂ (ln Tf )

∂P
, (7)

where χT is the isothermal compressibility, Tf is temperature of the orientational phase

transition, and P is the pressure. The thermal conductivity Λrot can be found from the

well-known gas-kinetic expression:

Λrot =
1

3
Crota

2τ−1, (8)

where τ is the characteristic time of orientational excitation transfer from one lattice site

to another. This time can be estimated from the relation τ ≈ h̄/ΔE [26], where the
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non-central part ΔE of the intermolecular interaction was calculated on the basic of the

expression given in [23] relating it to the temperature of transition into the orientationally

ordered phase of CCl4.

By substituting (3, 4, 5) in (2), the combined phonon mean-free path can be expressed

as:

lΣ (ω) =

(
ATω2

υ
+

B2ΛrotTω2

ρυ5
+

C2kBCrotT
2ω4

πρ2υ8

)−1

, (9)

We have also taken into account the next circumstance. Expression (9) is not appli-

cable if l (ω) becomes of order or smaller than half the phonon wavelength: λ/2 = πυ/ω.

A similar situation was considered previously for the case of U -processes alone [27]. Let

us assume that in the general case:

l (ω) =

⎧⎪⎪⎨
⎪⎪⎩

lΣ (ω) , 0 ≤ ω ≤ ω0,

απυ/ω = α λ/2, ω0 < ω ≤ ωD,
(10)

where α is the numerical coefficient of the order of unity. The frequency ω0 can be found

from the condition:

(
ATω2

0

υ
+

B2ΛrotTω2
0

ρυ5
+

C2kBCrotT
2ω4

0

πρ2υ8

)−1

=
απυ

ω0

, (11)

It equals

ω0 = − u

(
−η +

√
u3 + η2

)1/3
+
(
−η +

√
u3 + η2

)1/3
, (12)

where the parameters u and η are:

u =
πρ2υ7

3C2kBCrotT

(
A +

B2Λrot

ρυ4

)
; η = − ρ2υ7

2αC2kBCrotT 2
, (13)

The condition (11) is the well-known Ioffe-Regel criterion which implies localization.

We can therefore assume that the excitations whose frequencies are above the phonon

mobility edge ω0 are ”localized” or ”diffusive”. Since completely localized modes do not

contribute to the thermal conductivity, we supposed that the localization is weak and the

excitations can hop from site to site diffusively, as was suggested by Cahill and Pohl [28].

If the mean free path of all modes exceeds λ/2 the thermal conductivity is determined

solely by the processes of phonon scattering. At ω0 ≤ ωD the integral of thermal conduc-

tivity (1) is subdivided into two parts describing the contributions to the heat transfer

from the low-frequency phonons and high-frequency ”diffusive” modes:

Λ = Λph + Λdif , (14)

The validity of such description is supported by molecular dynamics simulations using

the Green-Kubo method. Recently, the thermal transport in the Lennard-Jones argon
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face centered cubic crystal was described by two time constants related to the decay of

the heat current autocorrelation function [29]. The first time scale is associated with

short wavelength acoustic phonons that have mean-free paths equal to one half of their

wavelength. The second time scale is longer, and corresponds to acoustic phonons with

mean-free paths longer than one half of their wavelength.

In the high-temperature limit (T ≥ ΘD) these contributions are:

Λph =
kB

2π2υ2

ω0∫

0

ω dω
C2kBCrotT 2ω3

πρ2υ8 + ATω
υ

+ B2ΛrotTω
ρυ5

, (15)

Λdif =
αkB

4πυ

(
ω2

D − ω2
0

)
, (16)

In the case of orientationally ordered phases Eq. (15) gives the well-known dependence

Λ ∝1/T at ω0 > ωD

Λph =
kBωD

2π2υAT
, (17)

4 Results and discussion

As it was marked above, the thermal conductivity of molecular crystals should be inversely

proportional to temperature at T ≥ ΘD if only three-quasiparticle scattering is taken into

account. In actual fact, isochoric studies of the thermal conductivity of molecular crystals

[4, 5, 14] detected a considerable deviation from this dependence. One of the reasons for

these discrepancies is an approach of the thermal conductivity to its lower limit. The

concept of the lower limit of thermal conductivity is based on following: the mean-free

paths of all oscillatory modes participating in the heat transfer is equal to half the phonon

wavelength λ/2, and the site-to-site heat transport proceeds as a diffusive process [28].

The lower limit of the lattice thermal conductivity Λmin can be written as [28]:

Λmin =
(

π

6

)1/3
kBn

2/3
∑

i

υi

⎧⎪⎨
⎪⎩
(

T

Θi

)2
Θi/T∫

0

x3ex

(ex − 1)2 dx

⎫⎪⎬
⎪⎭, (18)

The summation is over three (one longitudinal and two transverse) sound modes with

sound velocities υi, Θi is the Debye cutoff frequency for each polarization expressed in

degrees K (Θi = υi (h̄/kB) (6π2n)
1/3

), and n = 1/a3 is the number of atoms per unit

volume.

It was supposed that the rotational energy transfer should be taken into consideration

in molecular crystals and the lower limit of the thermal conductivity can be rewritten at

T ≥ ΘD as [4]:

Λ∗
min =

1

2

(
π

6

)1/3
(
1 +

z

3

)
kBn

2/3 (υ� + 2υt) , (19)

where υ� and υt are the longitudinal and transversal sound velocities, respectively, and z

is the number of rotational degrees of freedom.
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McGaughey and Kaviany [30] have also found on the example of silica-based crys-

tals that optical phonons make a non-negligible contribution to the thermal conductivity

when the total value is 10 W/m·K or lower. Two mechanisms have been identified. The

first, which is short-range and linked to optical phonons and short-wavelength acous-

tic phonons, is related to the geometry of the crystal structure. The resulting thermal

conductivity is temperature independent, and has been interpreted as a minimum value

for the crystal phase. This limiting value is different from that predicted by available

models based on a disordered structure. The second mechanism corresponds to the long-

time propagation of acoustic phonons within a crystal. It accounts for the temperature

dependence and majority of the magnitude of the thermal conductivity.

, 

υ

υ
υ

υ
υ
υ

Fig. 1 Calculated temperature dependence of the isobaric and isochoric sound velocities

of solid CCl4. υ
P
, υ

P

� , υ
P

t and υ
V
, υ

V

� , υ
V

t are the mean, longitudinal, and transversal sound

velocities for isobaric and isochoric conditions, respectively.

To our knowledge, no experimental data is available on the sound velocity of solid CCl4.

Because of this, the sound velocity was calculated by the method described in [31]. The

necessary data were taken from [12, 14, 32]. Figure 1 shows the calculated sound veloc-

ities of solid CCl4(Ib). The isochoric speeds of sound correspond to the molar volume

Vmol=86.48 cm3/mole.

The heat capacity of a molecular crystal can be written as a sum of contributions

from the translational Ctr, rotational Crot, and intramolecular Cin vibrations [21]:

CV = Ctr + Crot + Cin, (20)

To separate the partial contributions to the heat capacity, we used the method described

in [33]. The heat capacity at constant volume Cv can be calculated from the heat capacity

at atmospheric pressure Cp by using the known thermodynamic relation [21]:

CV = Cp/(1 + γβT ) , (21)

where β is the thermal expansion coefficient. The data needed were taken from [14, 32, 34].
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The translational heat capacity Ctr was calculated in the Debye approximation using

the characteristic temperature ΘD=64.6K obtained from expression ΘD=υ (h̄/kB) (6π2n)
1
3

and it is close to 3R (Fig. 2). The contribution of intramolecular vibrations to the heat

capacity Cin was calculated in the Einstein approximation using the intramolecular vibra-

tional frequencies νi [35]. Rotational component Crot was determined as Crot=Cv-Ctr-Cin.

All calculated contributions are shown in Fig. 2. It is seen that Crot decreases with tem-

perature increase, approaching to 3/2R at premelting temperature, which is characteristic

for a free three-dimensional rotator.

Fig. 2 Temperature dependences of the heat capacity contributions in solid CCl4(Ib):

Cp is the heat capacity at constant pressure [33], Cv is the heat capacity at Vmol=86.48

cm3/mole, Cin, Ctr, and Crot are its intramolecular, translational, and rotational compo-

nents, respectively.

To compare experimental results of thermal conductivity with theory correctly it is

necessary to use data at constant density to exclude the effect of thermal expansion.

The experimental data of the isochoric thermal conductivity of CCl4(Ib) (Vmol=86.48

cm3/mole) is shown in Fig. 3 according to [14] (black squares).

As the temperature increases, the isochoric thermal conductivity of CCl4 also in-

creases. The computer fitting of the thermal conductivity using equations (12, 13, 14,

15, 16) was performed by the least square method, varying the coefficients A,B,C, and

α. The parameters of the Debye model used at the fitting (a [14], υ (Fig. 1)), and the

fitted values A,B,C, α are listed in Table 1.

Table 1 Parameters of the Debye model of thermal conductivity obtained by the fitting,

and other quantities which were used in calculation.

Vmol, cm3/mole a, 10−10m υ, m/s γ α A, 10−16s/K B C

86.48 5.34 1118 2.62 1.5 1.4 6.1 2.47

The results for fitting the isochoric thermal conductivity are shown in Fig. 3 (solid
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line) along with the contributions (dashed lines) to the heat transfer from the low-

frequency phonons Λph and the high-frequency ”diffusive” modes Λdif . The dotted line

shows the lower limit of thermal conductivity Λ∗
min (19) calculated with the inclusion of

the site to site rotational energy transfer. The dash-and-dot line is the lower limit of

the thermal conductivity Λmin (18) calculated according to Cahill and Pohl [28]. The

vertical dash-and-dot line corresponds to the phase transition temperature Tf (II→Ib).

The heat transfer by phonons Λph initially decreases with increasing temperature, then

passes through a smooth minimum and begins to increase The effect can be attributed

to attenuation of phonon-rotation scattering, as we will discuss below. As temperature

rises, the heat transfer by the ”diffusive” modes increases. It can be noted in Fig. 3 that

our theoretical calculations of thermal conductivity agree well with experimental data

[14].

Λ

Λ

Λ

Λ∗

Λ

Fig. 3 Isochoric thermal conductivity Λv of solid CCl4 (black squares) [14]. The solid

line is the fitting curve to isochoric thermal conductivity. Λph and Λdif are contributions

of phonons and ”diffusive” modes to heat transfer, respectively. The lower limits of the

thermal conductivity Λmin and Λ∗
min are calculated according to equations (18, 19).

It can also be seen in Fig. 3 that the isochoric thermal conductivity of solid CCl4
is close to its lower limit Λmin. This circumstance has at least two important conse-

quences. Firstly, the proximity of the absolute value of the thermal conductivity to its

lower limit gives us reason to expect that its temperature dependence is mainly deter-

mined by acoustical vibrations with relatively small wave vectors. Secondly, one expects

substantial deviations from the law Λ ∝ 1/T . This circumstance cannot, however, be ac-

count for the growth of the isochoric thermal conductivity in the OD phase of solid CCl4.

The discussion of the lower limit of thermal conductivity of molecular crystals brings

up the inevitable question: should the site-to-site transport of the rotational energy of

the molecules be taken into account? The minimal values of the experimental thermal

conductivity Λv is 1.07 times higher than Λ∗
min calculated by equation (19), and 1.8 times

higher than Λmin calculated by equation (18). The above correlation between the Λmin

and Λ∗
min suggests the positive answer.
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To answer questions as to basic peculiarities of phonon-rotational coupling in the

OD phase of CCl4, we have undertaken to separate the phonon-phonon and phonon-

rotational contributions to the total thermal resistance. The additional phonon scattering

(comparing to the phonon-phonon one) may originate in the orientationally disordered

phases of molecular crystals due to the collective sort-range correlations of rotational

motion of molecules.

We assume that the contributions of the different scattering mechanisms to the ther-

mal resistance are additive [1]:

∑
i

Wi = Wpp + Wpr1 + Wpr2, (22)

where Wpp is the phonon-phonon thermal resistance, Wpr1 and Wpr2 are thermal resis-

tances determined by one and two-phonon mechanisms of phonon-rotational scattering,

respectively. Using (1) and (3, 4, 5) we have:

Wpp = 2π2υAT

/
kB

ω0∫

0

dω, (23)

Wpr1 = 2π2B2ΛrotT

/
kBυ3ρ

ω0∫

0

dω, (24)

Wpr2 = 2πC2T 2Crot

/⎛
⎝υ6ρ2

∣∣∣∣∣∣
ω0∫

0

dω

ω2

∣∣∣∣∣∣

⎞
⎠, (25)

Figure 4 shows the calculated results for thermal resistance in OD phase of CCl4.

The total thermal resistance W = 1/Λph is shown with black squares. The solid curve

is the sum of the thermal resistances, calculated by Eqs. (23, 24, 25). Phonon-phonon

component of the thermal resistance Wpp increases slowly with temperature. The thermal

resistance Wpr1 due to the one-phonon scattering by rotational excitations of molecules is

practically constant up to 240 K, and then decreases. The two-phonon component Wpr2

of the total thermal resistance is practically zero (not exceeds 3·10−5m·K/W).

The decrease of the thermal resistance caused by one-phonon scattering, relative to the

maximum is around 30 %. In the temperature range 226-240 K the additional contribution

of Wpr1 to the total thermal resistance is about 50 % of the phonon-phonon component and

then decreases. The temperature dependence of the phonon-rotation thermal resistance

of CCl4(Ib) is similar to that observed for the β-phase of solid SF6 above 160 K [5]. The

observed effect, as in the case of solid SF6, can be attributed to a weakening of the phonon

scattering on collective rotational excitations of the CCl4 molecules as the correlations of

their rotation becomes weaker. This is in agreement with the data in [9–11], according to

which the character of the molecular motion in the OD phase of CCl4 is closely similar

to that in the liquid state. Hence, it follows that the increase of the isochoric thermal

conductivity in OD phase of CCl4 can be attributed to the decrease in the contribution

of phonon scattering by collective orientational excitations of molecules upon defreezing

of their rotational motion.
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Σ
=1/Λ

Fig. 4 Contributions of the phonon-phonon scattering Wpp, and one-phonon Wpr1 mecha-

nisms of scattering to the total thermal resistance of solid CCl4. Square symbols indicate

total thermal resistance W=1/Λph. The solid line shows the sum of thermal resistances

Wpp, Wpr1, and Wpr2.

5 Conclusions

It is shown that the isochoric thermal conductivity of CCl4 can be described in a model,

where the heat is transferred by phonons and above the phonon mobility edge by ”dif-

fusive” modes migrating randomly from site to site. The total thermal resistance in

molecular crystals is determined by both phonon-phonon and phonon-rotation scattering

mechanisms. The contributions of phonon-phonon, one-, and two-phonon scattering to

the total thermal resistance of solid CCl4 are calculated supposing additive contributions

of the different scattering mechanisms. The increase of the isochoric thermal conductivity

with increased temperature can be attributed to the decrease of the phonon scattering

by the collective orientational excitations of the molecules as their rotational correlation

motion is damped. It was found that the phonon-rotation and phonon-phonon scattering

in solid CCl4(Ib) are close in their magnitudes. The main contribution to the phonon-

rotation scattering gives one-phonon processes like in the case of CH4 [22, 23].
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