Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 5, 2006

The inhomogeneous quantum invariance group of commuting fermions

Azmi Altintas and Metin Arik
From the journal Open Physics

Abstract

We consider a model of d fermions where creation and annihilation operators of different fermions commute. We show that this particle algebra is invariant under an inhomogeneous quantum group.

PACS: 02.20.Uw

[1] M. Jimbo: “A q-Analog of U(gl(N+1)), Hecke Algebra and the Yang-Baxter Equation”, Lett. Math. Phys., Vol. 11, (1986), p. 247. http://dx.doi.org/10.1007/BF0040022210.1007/BF00400222Search in Google Scholar

[2] S.L. Woronowicz: “Compact Matrix Pseudogroups”, Commun. Math. Phys. Vol. 111, (1987), p. 613. http://dx.doi.org/10.1007/BF0121907710.1007/BF01219077Search in Google Scholar

[3] Yu.I. Manin: “Quantum Groups and Non-commutative Geometry”, Preprint: Montreal University, CRM-1561, (1988). Search in Google Scholar

[4] L.D. Faddeev, N.Y. Reshetikhin and L.A. Takhtajan: “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., Vol. 1, (1990), p. 193. Search in Google Scholar

[5] J. Links, A. Forester and M. Karowski: “Bethe Ansatz Solution of a Closed Spin 1 XXZ Heisenberg ChainWith Quantum Algebra Symmetry”, Journal of Mathematical Physics,Vol. 40(2), (1999), pp. 726–735. http://dx.doi.org/10.1063/1.53270110.1063/1.532701Search in Google Scholar

[6] V. Pasquer and H. Saleur: “Common Structures Between Finite Systems and Conformal Field Theories Through Quantum Groups”, Nuclear Physics B,Vol. 330, (1990), pp. 523–536. http://dx.doi.org/10.1016/0550-3213(90)90122-T10.1016/0550-3213(90)90122-TSearch in Google Scholar

[7] V. Rittenberg and D. Wyler: “Sequences of Z 2 ⊕ Z 2 Graded Lie Algebras and Superalgebras”, J. Math. Phys.,Vol. 19(10), (1978), pp. 2193–2200. http://dx.doi.org/10.1063/1.52355210.1063/1.523552Search in Google Scholar

[8] V. Rittenberg and D. Wyler: “Generalized Superalgebras”, Nuclear Physics B,Vol. 139, (1978), pp. 189–202. http://dx.doi.org/10.1016/0550-3213(78)90186-410.1016/0550-3213(78)90186-4Search in Google Scholar

[9] L.C. Biedenharn and M.A. Lohe: Quantum Group Symmetry and q-Tensor Algebras, World Scientific, Singapore, 1995. 10.1142/2815Search in Google Scholar

[10] M. Arik, U. Kayserilioğlu: “Quantum Invariance Group of Fermions and Bosons”, arXiv:hep-th/0304185. Search in Google Scholar

[11] C. Kassel: Quantum Groups, Springer Verlag, New York, 1995. 10.1007/978-1-4612-0783-2Search in Google Scholar

[12] A. Schirrmacher: “The Multiparametric Deformation of GL(n) and the Covariant Differential Calculus on the Quantum Vector Space”, Z. Phys. C-Particles and Fields,Vol. 50, (1991), pp. 321–327. http://dx.doi.org/10.1007/BF0147408510.1007/BF01474085Search in Google Scholar

[13] M. Arik, S. Gün and A. Yildiz: “Invariance Quantum Group of the Fermionic Oscillator”, Eur. Phys. J. C,Vol. 27, (2003), p. 453. http://dx.doi.org/10.1140/epjc/s2002-01097-x10.1140/epjc/s2002-01097-xSearch in Google Scholar

[14] H. Georgi: Lie Algebras in Particle Physics, Westview Press, USA, 1999. Search in Google Scholar

[15] A. A. Altintas, M. Arik and N.M. Atakishiyev: “On Unitary Transformations of Orthofermion Algebra That Form a Quantum Group”, Mod. Phys. Lett. A,Vol. 21(18), (2006), pp. 1463–1466. http://dx.doi.org/10.1142/S021773230601967010.1142/S0217732306019670Search in Google Scholar

Published Online: 2006-12-5
Published in Print: 2007-3-1

© 2006 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow