Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 21, 2009

Dielectric response of metallic crystal made up of highly polarisable molecules: the semi-classical approach

Željana Bonačić Lošić and Paško Županović
From the journal Open Physics

Abstract

The dielectric response is considered within models of a one-band metal, a two-band insulator and a two-band metal using the semi-classical approximation. Corresponding dielectric functions are found. The dielectric function of two-band metal is found to be the interpolation between the Sellmeyer and Lorenz-Lorentz expressions, respectively. The frequencies of the collective modes are identified as the zeroes of the dielectric functions. The correspondence between the semi-classical approach used in this paper and the many-body calculation within the random-phase approximation is established.

[1] C. G. Darwin, Proc. R. Soc. Lon. Ser.-A 146, 17 (1934) http://dx.doi.org/10.1098/rspa.1934.013610.1098/rspa.1934.0136Search in Google Scholar

[2] S. L. Adler, Phys. Rev. 126, 413 (1962) http://dx.doi.org/10.1103/PhysRev.126.41310.1103/PhysRev.126.413Search in Google Scholar

[3] N. Wiser, Phys. Rev. 129, 62 (1963) http://dx.doi.org/10.1103/PhysRev.129.6210.1103/PhysRev.129.62Search in Google Scholar

[4] W. Hanke, I. J. Sham, Phys. Rev. B 12, 4501 (1975) http://dx.doi.org/10.1103/PhysRevB.12.450110.1103/PhysRevB.12.4501Search in Google Scholar

[5] F. Trani, D. Ninno, G. Iadonisi, Phys. Rev. B 75, 033312 (2007) http://dx.doi.org/10.1103/PhysRevB.75.03331210.1103/PhysRevB.75.033312Search in Google Scholar

[6] F. Trani, D. Ninno, G. Iadonisi, Phys. Rev. B 76, 085326 (2007) http://dx.doi.org/10.1103/PhysRevB.76.08532610.1103/PhysRevB.76.085326Search in Google Scholar

[7] M. Gajdoŝ, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Phys. Rev. B 73, 045112 (2006) http://dx.doi.org/10.1103/PhysRevB.73.04511210.1103/PhysRevB.73.045112Search in Google Scholar

[8] S. Brodersen, D. Lukas, W. Schattke, Phys. Rev. B 66, 085111 (2002) http://dx.doi.org/10.1103/PhysRevB.66.08511110.1103/PhysRevB.66.085111Search in Google Scholar

[9] P. Županović, A. Bjeliŝ, S. Bariŝic, Z. Phys. B 97, 113 (1995) http://dx.doi.org/10.1007/BF0131759410.1007/BF01317594Search in Google Scholar

[10] P. Županović, A. Bjeliŝ, S. Bariŝic, Z. Phys. B 101, 387 (1996) http://dx.doi.org/10.1007/s00257005022410.1007/s002570050224Search in Google Scholar

[11] P. Županović, A. Bjeliŝ, S. Bariŝic, Z. Phys. B 101, 397 (1996) http://dx.doi.org/10.1007/s00257005022510.1007/s002570050225Search in Google Scholar

[12] C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, New York, 2005) Search in Google Scholar

[13] J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1975) Search in Google Scholar

[14] D. Pines, Elementary Excitations in Solids (W. A. Benjamin, Inc. New York, Amsterdam, 1964) Search in Google Scholar

[15] P. Županović, A. Bjeliš, Ž. Agic, Fizika A (Zagreb) 10, (2001) Search in Google Scholar

[16] J. Frenkel, Phys. Rev. 37, 17 (1931) http://dx.doi.org/10.1103/PhysRev.37.1710.1103/PhysRev.37.17Search in Google Scholar

[17] J. Frenkel, Phys. Rev. 37, 1276 (1931) http://dx.doi.org/10.1103/PhysRev.37.127610.1103/PhysRev.37.1276Search in Google Scholar

[18] M. H. Cohen, F. Keller, Phys. Rev. 99, (1955) http://dx.doi.org/10.1103/PhysRev.99.112810.1103/PhysRev.99.1128Search in Google Scholar

[19] D. Pines, P. Nozieres, Phys. Rev. 109, 741 (1958) http://dx.doi.org/10.1103/PhysRev.109.28010.1103/PhysRev.109.280Search in Google Scholar

[20] D. Pines, P. Nozieres, Phys. Rev. 109, 762 (1958) http://dx.doi.org/10.1103/PhysRev.109.28010.1103/PhysRev.109.280Search in Google Scholar

[21] D. Pines, P. Nozieres, Nuovo Cimento 9, 470 (1958) http://dx.doi.org/10.1007/BF0272510310.1007/BF02725103Search in Google Scholar

[22] D. Jérome, Chem. Rev. 104, 5565 (2004) http://dx.doi.org/10.1021/cr030652g10.1021/cr030652gSearch in Google Scholar PubMed

[23] A. Graja, Low-dimensional organic conductors (World Scientific Pub Co Inc, London, 1991) 10.1142/1272Search in Google Scholar

[24] R. E. Peierls, Quantum theory of Solids (Oxford University, Oxford, 1955) Search in Google Scholar

[25] H. Basista et al., Phy. Rev. B 42, 4088 (1990) http://dx.doi.org/10.1103/PhysRevB.42.408810.1103/PhysRevB.42.4088Search in Google Scholar

[26] P. Županović, A. Bjeliš, S. Barišic, Europhys. Lett. 45, 188 (1999) http://dx.doi.org/10.1209/epl/i1999-00145-810.1209/epl/i1999-00145-8Search in Google Scholar

Published Online: 2009-7-21
Published in Print: 2009-12-1

© 2009 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow