Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 21, 2009

Natural brane-confinement from massive Z 2-spontaneously broken Kaluza-Klein excitations in the bulk

Marina Dariescu, Ciprian Dariescu and Carlos Romero
From the journal Open Physics

Abstract

For a real scalar field minimally coupled to bulk gravity, in five dimensions, we analytically solve the Gordon equation, near one of the degenerated vacua of an effective potential with a spontaneously broken Z 2-symmetry. Dealing with the back-reaction from the excited massive modes on the whole scale function, we are pointing out that the lighter excitations of the scalar in the bulk turn more and more the warp function into the one of a partition on the confined brane.

[1] T. Kaluza, Sitzungsber Preuss Akad Wiss 33, 966 (1921) Search in Google Scholar

[2] O. Klein, Z. Phys. 37, 895 (1926) http://dx.doi.org/10.1007/BF0139748110.1007/BF01397481Search in Google Scholar

[3] L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999) http://dx.doi.org/10.1103/PhysRevLett.83.469010.1103/PhysRevLett.83.4690Search in Google Scholar

[4] N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 429, 263 (1998) http://dx.doi.org/10.1016/S0370-2693(98)00466-310.1016/S0370-2693(98)00466-3Search in Google Scholar

[5] V. A. Rubakov, Phys. Usp.+ 44, 871 (2001) http://dx.doi.org/10.1070/PU2001v044n09ABEH00100010.1070/PU2001v044n09ABEH001000Search in Google Scholar

[6] N. Arkani-Hamed, S. Dimopoulos, N. Kaloper, R. Sundrum, Phys. Lett. B 480, 193 (2000) http://dx.doi.org/10.1016/S0370-2693(00)00359-210.1016/S0370-2693(00)00359-2Search in Google Scholar

[7] N. Kaloper, Phys. Rev. D 60, 123506 (1999) 10.1103/PhysRevD.60.103509Search in Google Scholar

[8] S. S. Seahra, Phys. Rev. D 68, 104027 (2003) 10.1103/PhysRevD.68.104027Search in Google Scholar

[9] A. Muck, A. Pilaftsis, R. Ruckl, Lect. Notes Phys. 647, 189 (2004) 10.1007/978-3-540-40975-5_7Search in Google Scholar

[10] F. Dahia, C. Romero, Phys. Lett. B 651, 232 (2007) http://dx.doi.org/10.1016/j.physletb.2007.06.00410.1016/j.physletb.2007.06.004Search in Google Scholar

[11] D. Bazeia, F. A. Brito, L. Losano, J. High Energy Phys. 0611, 064 (2006) http://dx.doi.org/10.1088/1126-6708/2006/11/06410.1088/1126-6708/2006/11/064Search in Google Scholar

[12] O. DeWolfe, D. Z. Freedman, S. S. Gubser, A. Karch, Phys. Rev. D 62, 046008 (2000) 10.1103/PhysRevD.62.046008Search in Google Scholar

[13] M. Gremm, Phys. Lett. B 478, 434 (2000) http://dx.doi.org/10.1016/S0370-2693(00)00303-810.1016/S0370-2693(00)00303-8Search in Google Scholar

[14] M. Liu, H. Liu, L. Xu, P. S. Wesson, Mod. Phys. Lett. A 21, 2937 (2006) http://dx.doi.org/10.1142/S021773230602234110.1142/S0217732306022341Search in Google Scholar

[15] H. Liu, P. S. Wesson, Class. Quantum Grav. 13, 2311 (1996) http://dx.doi.org/10.1088/0264-9381/13/8/02210.1088/0264-9381/13/8/022Search in Google Scholar

[16] K. Koyama, A. Mennim, V. A. Rubakov, D. Wands, T. Hiramatsu, J. Cosmol. Astropart. P. 0704, 001 (2007) http://dx.doi.org/10.1088/1475-7516/2007/04/00110.1088/1475-7516/2007/04/001Search in Google Scholar

[17] C. Csaki, J. Erlich, C. Grojean, T. J. Hollowood, Nucl. Phys. B 584, 359 (2000) http://dx.doi.org/10.1016/S0550-3213(00)00390-410.1016/S0550-3213(00)00390-4Search in Google Scholar

[18] M. Gogberashvili, Mod. Phys. Lett. A 14, 2025 (1999) http://dx.doi.org/10.1142/S021773239900208X10.1142/S021773239900208XSearch in Google Scholar

[19] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, 4th edition (Academic, New York, 1965) Search in Google Scholar

[20] V. A. Rubakov, M. E. Shaposhnikov, Phys. Lett. B 125, 136 (1983) http://dx.doi.org/10.1016/0370-2693(83)91253-410.1016/0370-2693(83)91253-4Search in Google Scholar

Published Online: 2009-7-21
Published in Print: 2009-12-1

© 2009 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow