Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 21, 2009

The Yang-Mills fields — from the gauge theory to the mechanical model

Radu Constantinescu and Carmen Ionescu
From the journal Open Physics

Abstract

The paper presents some mechanical models of gauge theories, i.e. gauge fields transposed in a space with a finite number of degree of freedom. The main focus is on how a global symmetry as the BRST one could be transferred in this context. The mechanical Yang-Mills model modified by taking the ghost type variables into account will be considered as an example of nonlinear dynamical systems.

[1] C. Becchi, A. Rouet, R. Stora, Phys. Lett. B 52 (1974) 344 http://dx.doi.org/10.1016/0370-2693(74)90058-610.1016/0370-2693(74)90058-6Search in Google Scholar

[2] I. V. Tyutin, Gauge invariance in Field Theory and Statistical Mechanics, Lebedev Preprint 39 (1975) unpublished Search in Google Scholar

[3] M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (Princeton Univ. Press, 1992) 10.1515/9780691213866Search in Google Scholar

[4] I. A. Batalin, P. M. Lavrov, I. V. Tyutin, J. Math. Phys. 31, 6 (1990) http://dx.doi.org/10.1063/1.52882810.1063/1.528828Search in Google Scholar

[5] R. Constantinescu, L. Tataru, Phys. Lett. B 417, 269 (1998) http://dx.doi.org/10.1016/S0370-2693(97)01356-710.1016/S0370-2693(97)01356-7Search in Google Scholar

[6] R. Constantinescu, C. Ionescu, Int. J. Mod. Phys. A 21, 6629 (2006) http://dx.doi.org/10.1142/S0217751X0603443410.1142/S0217751X06034434Search in Google Scholar

[7] S. G. Matincan, G. K. Savvidi, N. G. Ter-Arutyunyan-Savvidi, Sov. Phys. JETP-USSR 53, 421 (1981) Search in Google Scholar

[8] A. B. Balakin, H. Dehnen, A.E. Zayats, Int. J. Mod. Phys. D 17, 1255 (2008) http://dx.doi.org/10.1142/S021827180801280210.1142/S0218271808012802Search in Google Scholar

[9] G. L. Gerakopoulos, S. Basilakos, G. Contopoulos, Phys. Rev. D 77, 043521 (2008) 10.1103/PhysRevD.77.043521Search in Google Scholar

[10] L. D. Fadeev, V. N. Popov, Phys. Lett. B 25, 29 (1967) http://dx.doi.org/10.1016/0370-2693(67)90067-610.1016/0370-2693(67)90067-6Search in Google Scholar

[11] G. t’Hooft, Nucl. Phys. B 33, 173 (1971) http://dx.doi.org/10.1016/0550-3213(71)90395-610.1016/0550-3213(71)90395-6Search in Google Scholar

[12] G. t’Hooft, Nucl. Phys. B 35, 167 (1971) http://dx.doi.org/10.1016/0550-3213(71)90139-810.1016/0550-3213(71)90139-8Search in Google Scholar

[13] R. P. Feynman, A. R. Hibbs, Quantum Mechanics and Path Integral (Mc. Graw-Hill, New York, 1965) Search in Google Scholar

[14] B. de Witt, Phys. Rev. 160, 1113 (1967) http://dx.doi.org/10.1103/PhysRev.160.111310.1103/PhysRev.160.1113Search in Google Scholar

[15] A. Babalean, R. Constantinescu, C. Ionescu, J. Phys. A-Math. Gen. 31, 8653 (1998) http://dx.doi.org/10.1088/0305-4470/31/43/00810.1088/0305-4470/31/43/008Search in Google Scholar

[16] C. Ionescu, Mod. Phys. Lett. A 23, 737 (2008) http://dx.doi.org/10.1142/S021773230802678910.1142/S0217732308026789Search in Google Scholar

[17] T. S. Biro, S. G. Matinyan, B. Muller, Chaos and gauge field theory (World Scientific Lecture Notes in Physics, 1994) 56 10.1142/2584Search in Google Scholar

[18] M. Vittot, J. Phys. A-Math. Gen. 37, 6337 (2004) http://dx.doi.org/10.1088/0305-4470/37/24/01110.1088/0305-4470/37/24/011Search in Google Scholar

[19] R. Cimpoiasu, V. M. Cimpoiasu, R. Constantinescu, Romanian Journal of Physics 50 (2005) 317 Search in Google Scholar

Published Online: 2009-7-21
Published in Print: 2009-12-1

© 2009 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow