Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 21, 2009

Long time properties of the evolution of an unstable state

Krzysztof Urbanowski
From the journal Open Physics


An effect generated by the nonexponential behavior of the survival amplitude of an unstable state in the long time region is considered. In 1957 Khalfin proved that this amplitude tends to zero as t → ∞ more slowly than any exponential function of t. This can be described in terms of the time-dependent decay rate γ(t) which, when considered with the Khalfin result, means that this γ(t) is not a constant for large t but that it tends to zero as t → ∞. We find that a similar conclusion can be drawn for a large class of models of unstable states for a quantity, which can be interpreted as the “instantaneous energy” of the unstable state. This energy should be much smaller for suitably larger values of t than when t is of the order of the lifetime of the considered state. Within a given model we show that the energy corrections in the long (t → ∞) and relatively short (lifetime of the state) time regions, are different. This is a purely quantum mechanical effect. It is hypothesized that there is a possibility to detect this effect by analyzing the spectra of distant astrophysical objects. The above property of unstable states may influence the measured values of astrophysical and cosmological parameters.

[1] L. P. Horwitz, J. P. Marchand, Rocky Mt. J. Math. 1, 225 (1971) in Google Scholar

[2] W. Królikowski, J. Rzewuski, Nuovo Cimento B 25, 739 (1975) in Google Scholar

[3] R. Zwanzig, Physica 30, 1109 (1964) in Google Scholar

[4] A. Agodi, M. Baldo, E. Recami, Ann. Phys. 77, 157 (1973) in Google Scholar

[5] F. Haake, Staistical Treatment of Open Systems by Generalized master Equations, Springer Tracts in Modern Physics Vo. 66 (Springer, Berlin, 1973) 10.1007/978-3-662-40468-3_2Search in Google Scholar

[6] K. Urbanowski, Phys. Rev. A 50, 2847 (1994) in Google Scholar

[7] Y. Aharonov and D. Rohrlich, Quantum Paradoxes (Wiley- VCH, Weinheim, 2005) in Google Scholar

[8] Y. Aharonov, L. Vaidman, J. Phys. A-Math. Gen. 24, 2315 (1991) in Google Scholar

[9] Y. Aharonov, L. Vaidman, Phys. Rev. A 41, 11 (1990) in Google Scholar PubMed

[10] Y. Aharonav, D. Albert and L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988) in Google Scholar PubMed

[11] P. C. W. Davies, arXiv:0807.1357 Search in Google Scholar

[12] V. F. Weisskopf, E. T. Wigner, Z. Phys. 63, 54 (1930) in Google Scholar

[13] V. F. Weisskopf, E. T. Wigner, Z. Phys. 65, 18 (1930) in Google Scholar

[14] M. L. Goldberger, K. M. Watson, Collision Theory (Willey, New York, 1964) 10.1063/1.3051231Search in Google Scholar

[15] S. Krylov, V. A. Fock, Zh. Eksp. Teor. Fiz.+ 17, 93 (1947) Search in Google Scholar

[16] L. A. Khalfin, Zh. Eksp. Teor. Fiz.+ 33, 1371 (1957) Search in Google Scholar

[17] L. A. Khalfin, Sov. Phys. JETP-USSR 6, 1053 (1958) Search in Google Scholar

[18] R. E. A. C. Paley, N. Wiener, Fourier transforms in the comlex domain (American Mathematical Society, New York, 1934) Search in Google Scholar

[19] R. G. Newton, Scattering Theory of Waves and Particles, 2nd edtition (Springer, New York, 1982) 10.1007/978-3-642-88128-2Search in Google Scholar

[20] L. Fonda, G. C. Ghirardii, A. Rimini, Rep. Prog. Phys. 41, 587 (1978) in Google Scholar

[21] A. Peres, Ann. Phys. 129, 33 (1980) in Google Scholar

[22] P. T. Greenland, Nature 335, 298 (1988) in Google Scholar

[23] D. G. Arbo, M. A. Castagnino, F. H. Gaioli, S. Iguri, Physica A 227, 469 (2000) in Google Scholar

[24] J. M. Wessner, D. K. Andreson, R. T. Robiscoe, Phys. Rev. Lett. 29, 1126 (1972) in Google Scholar

[25] E. B. Norman, S. B. Gazes, S. C. Crane, D. A. Bennet, Phys. Rev. Lett. 60, 2246 (1988) in Google Scholar PubMed

[26] E. B. Norman, B. Sur, K. T. Lesko, R.-M. Larimer, Phys. Lett. B 357, 521 (1995) in Google Scholar

[27] J. Seke, W. N. Herfort, Phys. Rev. A 38, 833 (1988) in Google Scholar

[28] R. E. Parrot, J. Lawrence, Europhys. Lett. 57, 632 (2002) in Google Scholar

[29] J. Lawrence, Journ. Opt. B: Quant. Semiclass. Opt. 4, S446 (2002) in Google Scholar

[30] I. Joichi, Sh. Matsumoto, M. Yoshimura, Phys. Rev. D 58, 045004 (1998) in Google Scholar

[31] N. G. Kelkar, M. Nowakowski, K. P. Khemchandani, Phys. Rev. C 70, 024601 (2004) in Google Scholar

[32] M. Nowakowski, N. G. Kelkar, AIP Conf. Proc. 1030, 250 (2008) in Google Scholar

[33] T. Jiitoh, S. Matsumoto, J. Sato, Y. Sato, K. Takeda, Phys Rev. A 71, 012109 (2005) in Google Scholar

[34] C. Rothe, S. I. Hintschich, A. P. Monkman, Phys. Rev. Lett. 96, 163601 (2006) in Google Scholar PubMed

[35] K. M. Sluis, E. A. Gislason, Phys. Rev. A 43, 4581 (1991) in Google Scholar PubMed

[36] M. Abramowitz, I. A. Stegun (Eds.), Handbook of Mathematical Functions, Natl. Bur. Stand. Appl. Math. Ser. No 55 (U.S. GPO, Washington, D.C., 1964) Search in Google Scholar

[37] R. M. Corless, G. H. Gonet, D. E. G. Hare, D. J. Jeffrey, D. E. Khnut, Adv. Comput. Math. 5, 329 (1996) in Google Scholar

[38] F. W. J. Olver, Asymptotics and special functions (Academic Press, New York, 1974) Search in Google Scholar

[39] F. M. Dittes, H. L. Harney, A. Müller, Phys. Rev. A 45, 701 (1992) in Google Scholar

[40] W. Heitler, The Quantum Theory of Radiation (Oxford University Press, London, 1954; Dover Publications, New York, 1984) Search in Google Scholar

[41] E. W. Kolb, M. S. Turner, The Early Universe (Addison-Wesley Publ. Co., 1993) Search in Google Scholar

Published Online: 2009-7-21
Published in Print: 2009-12-1

© 2009 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow