Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 22, 2010

Alternative method for the measurement of the temperature of a Bose-Einstein condensate

Abel Camacho, Luis Barragán-Gil and Alfredo Macías
From the journal Open Physics


Usually the temperature in a Bose-Einstein condensate is experimentally deduced resorting to the comparison between the Maxwell-Boltzmann velocity distribution function and the density profile in momentum space. Though a successful method it is merely an approximation, since it also implies the use of classical statistical mechanics at temperatures close to the condensation temperature where quantum effects play a relevant role and cannot be neglected. The present work puts forward an alternative method in which we use an ultra-intense light pulse and a nonlinear optical material as detectors for differences in times-of-flight, and in this way the temperature is deduced.

[1] S. N. Bose, Z. Phys. 26, 178 (1924). in Google Scholar

[2] A. Einstein, Sitzber. K. Preuss. Aka. 3 (1925) Search in Google Scholar

[3] S. Stenholm, Phys. Rep. 363, 173 (2002) in Google Scholar

[4] R. K. Phatria, Statistical Mechanics (Butterworth Heineman, Oxford, 1996) Search in Google Scholar

[5] P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, Phys. Rev. Lett. 7, 118 (1961) in Google Scholar

[6] T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000) in Google Scholar

[7] L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford University Press, Oxford, 2004) Search in Google Scholar

[8] K. B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995) in Google Scholar PubMed

[9] M. R. Andrews et al., Science 75, 84 (1996) in Google Scholar PubMed

[10] C. J. Pethick, H. Smith, Bose-Einstein Condensation in Diluted Gases (Cambrige University Press, Cambrige, 2006) Search in Google Scholar

[11] F. Dalfovo, S. Giorgini, L. P. Pitaevski, S. Stringari, Rev. Mod. Phys. 71, 463 (1999) in Google Scholar

[12] M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 2002) Search in Google Scholar

[13] B. H. Bransden, C. J. Joachain, Physics of Atoms and Molecules (Longman, New York, 1983) Search in Google Scholar

[14] L. de la Peña, Introducción a la Mecánica Cuántica (Universidad Nacional Autónoma de México y Fondo de Cultura Económica, México, 2006) Search in Google Scholar

[15] A. J. Legget, Rev. Mod. Phys. 73, 307 (2001) in Google Scholar

[16] J. R. Ensher, PhD thesis, University of Colorado (Boulder, USA, 1998) Search in Google Scholar

[17] R. D. Guenther, Modern Optics (John Wiley and Sons, New York, 1990) Search in Google Scholar

[18] K. G. Libbrecht, M. W. Libbrecht, Am. J. Phys. 74, 1055 (2006) in Google Scholar

[19] G. Chartier, Introduction to Optics (Springer-Verlag, New York, 2005) Search in Google Scholar

[20] W. Petrich M. H. Anderson, J. R. Ensher, E. A. Cornell, Phys. Rev. Lett. 74, 3352 (1995) in Google Scholar PubMed

[21] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products (Academic Press, New York, 1980) Search in Google Scholar

[22] M. L. Boas, Mathematical Methods in the Physical Sciences (John Wiley and Sons, New Jersey, 2006) Search in Google Scholar

[23] J. J. McClelland, In: F. B. Dunning, R. G. Haulet (Eds.), Atomic, Molecular, and Optical Physics: Atoms and molecules (Academic Press, New York, 1996) 147 Search in Google Scholar

[24] H. J. Metcalf, P. van de Strate, Laser Cooling and Trapping (Springer-Verlag, Heidelberg, 1999) 10.1007/978-1-4612-1470-0Search in Google Scholar

[25] C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, 1993) Search in Google Scholar

[26] R. Eisenschitz, Statistical Theory of Irreversible Processes (Oxford University Press, London, 1958) Search in Google Scholar

Published Online: 2010-7-22
Published in Print: 2010-10-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow