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Abstract:

The paper presents a concrete study of the existence of generalized and potential symmetries for the

1+1 dimensional version of the Rudenko—Robsman equation, an interesting fourth-order partial differential
equation that describes the evolution of nonlinear waves in a dispersive medium. As the main results, the
existence of a two-parameter algebra of generalized symmetries and of an infinite-dimensional algebra
when potential symmetries are taken into account is proven.
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1. Introduction

Symmetry-group methods and their recent generalizations
proved to be useful in establishing complete integrability
of certain systems of differential equations [1-3]: They al-
low us to understand the dynamics of concrete physical
systems, to compute their conservation laws, as well as to
construct exact solutions. For physicists, these results are
very important in the study of concrete nonlinear dynam-
ical systems with a finite or an infinite number of degrees
of freedom. In recent years considerable attention has
been devoted to applications of symmetry-group methods
to a large variety of physical phenomena described by
second- or third-order nonlinear partial differential equa-
tions, but relatively few complete results have been ob-
tained for fourth-order evolution equations. For example,
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the Calabi flow equation has been studied, which appears
in general relativity for describing spherical gravitational
waves in vacuum. Another fourth-order equation with im-
portant physical applications is the Bretherton equation,
which describes the propagation of an air finger into a
channel with a rigid wall [4].

Recently, we initiated the study of symmetry properties
and invariant quantities for some fourth-order equations
arising in physics [5], using the general methodology pre-
sented in [6] and [7]. This paper intends to give a descrip-
tion of all arbitrary-order generalized symmetries for the
Rudenko—Robsman (RR) equation

Wi = QWWy — BWxxxx , (1)

as an alternative approach to study special classes of so-
lutions and possible nontrivial linearizations of this model.
The RR equation was introduced in 2002 for describing
the nonlinear wave propagation in scattering media that
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are characterized by weak sound-signal attenuation pro-
portional to the fourth power of frequency in a coordinate
system moving at the speed of sound [8]. The first physical
interpretation of the RR equation was that it describes
shock waves in liquids containing gas bubbles, where
the coefficient for sound damping has the form Bw* and
the dispersion equation for the corresponding infinitesimal
perturbations takes the form

k=2 +iBw'. 2)
C

Here, c is the speed of sound and w is the frequency.

Signal attenuation proportional to the frequency to the
fourth power was also observed in media containing small
inhomogeneities, for example, in rocks, in spongy cranial
bones, or in any media with small-scale parameter fluctu-
ations for which the Rayleigh scattering law is valid [8, 9].
It is interesting to note that the RR equation presents
some similarities with the second-order Burgers equation.
Indeed, both equations allow stationary self-similar so-
lutions, travelling-wave solutions, and rational solutions
(see Chapter 10 in [4]). On the other hand, a general study
of the RR equation [10] shows that there are stationary so-
lutions of this equation in the form of a shock wave that
exhibit unusual oscillations around the shock front. This
is a distinct feature of the classical Burgers equation. The
explicit analysis of the profile of initially sinusoidal-wave
solutions and their attenuation was given in [11]. The
mechanisms responsible for anomalously strong acoustic
nonlinearities in the case of the RR equation was pre-
sented in some recent papers of Rudenko [9, 12].

This paper has the following structure. After this intro-
ductory part, a short presentation of the general method
that can be used for finding generalized symmetries will be
given in the second section. The third section is dedicated
to the concrete study of the existence of generalized sym-
metries for the Eq. (1), and the fourth section presents a
complementary study of the potential nonclassical symme-
tries for the same equation. In the case of the generalized
symmetries, we have shown that the system accepts only
two independent symmetry operators, which have the form
of classical, point-like symmetries. By contrast, there is
an infinite set of generators for the potential symmetries of
the equation, generators given by two arbitrary functions
a(t) and b(t). Comments on these results are presented
in the last section of the paper.

2. Generalized symmetries of evolu-
tion equations

The usual symmetries encountered in the study of dif-
ferential equations are commonly referred to as point, or
classical, symmetries. A point symmetry of a system of
differential equations is a 1-parameter group of transfor-
mations of independent and dependent variables that car-
ries any solution of the equations to another solution. For
differential equations derived from a variational principle,
the point symmetries that preserve the action lead to con-
However, not all conservation laws are
given by point symmetries. To account for all conserva-
tion laws in Lagrangian field theory one must enlarge the

servation laws.

notion of symmetry to include generalized symmetries.

A generalized symmetry is an infinitesimal transformation,
constructed locally from the independent variables, the
dependent variables, and the derivatives of the dependent
variables, that carries solutions of the differential equa-
tions to nearby solutions. The importance of generalized
symmetries is underlined by their role in deciding on the
complete integrability of non-linear differential equations.
In particular, when a system of differential equations is
integrable, it generally admits “high-orders” generalized
symmetries [3].

Consider the nth order evolution equation:

A=w—K(t,x,w,w, -, w") =0, (3)

where w;, w, means the time, respectively space, deriva-
tive of the dependent variable w = w(t, x), and w'” is the
nth-order derivative.

The point-symmetry analysis considers the one-parameter
Lie group of infinitesimal transformations in (x, t, w) given
by

x* x+&&(x, t,w)+ 0(&?),
t*

t+et(x, t, W)+O(€2) , (4)
w* w+ed(x, t,w) + O (&),

where ¢ is the group parameter. One requires that these
transformations leave invariant the set of solutions of (3)
Sa = {w(x,t) : A = 0}. The associated Lie algebra is
realized by vector fields of the form

U= &(x, t, w)dy + T(x, t, W), + ¢(x, t, w)d, . (5)

The set S, is invariant under the transformation (4) pro-
vided that

prU(A)|azo =0, (6)

where pr”U is the nth prolongation of the vector field (5),
which is given explicitly in terms of &, 7, and ¢ in [3]. To
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look for generalized symmetries one means to considering
all the solutions for &, 7 and ¢ of the Eq. (6) depending
on t, x, w, but on the derivatives of w too:

U=&(x, t,w, Wy, )0y + T(x, t, W, w,, )0

+ o(x, t,w,wy, )0y . (7)

The maximum order of derivatives of w gives the so-called
order of the generalized (infinitesimal) symmetry.

Having determined the infinitesimals, the invariants /,,
a = 1,2, are found by integrating the characteristic equa-

tions d d d
X t w
= = : (®)

dx, t,w)  T(x,t,w)  P(x, t,w)

and they have the form I,(x, t,w) = C,, where C, is a
constant. The special invariant solutions of the initial

equation corresponding to a generalized symmetry of the
form (7) have the form I, = ©(/;), where © is an unknown
function, and are obtained by substitution of the depen-
dent variable w(x, t) with ©(/;) in the initial equation. The
new ODE obtained by this substitution is called reduced
equation.

In practice, the Eq. (6) is very difficult to solve for a de-
pendence on the derivatives of order higher than two, due
to the large number of terms involved in the expression of
the prolongation. An alternative version can be obtained
by changing the form of the infinitesimal symmetry (7) to
the equivalent evolutionary form

Uo = 0O(t, x,w, Wy, --)0w, 9)

where Q =
generalized vector field U.

The symmetry Eq. (6) for the initial Eq. (3) can be rewritten
as:

¢ — Ew, — tw; is the characteristic of the

(D;—K')Q=0, (10)
where D; is the total time derivative (the evolutionary
derivative)

D\Q = aQ+Z D‘ (w)) = 0,0 + Q'(K),

and K’ denotes the Frechet derivative of K:

o5 K,

i=0 aWL’) .
The simplest form of the symmetry condition (10) is:

0.0+ Q'(K) =K'(Q). (1)

Usually, one chooses a particular order m for the charac-
teristic

0= Q(t,x, W, Wy, ..., Wim)) ,

and one searches for solutions Q of the Eq. (11) by iden-
tifying the coefficients of all the corresponding monomials
expressed in w and its x-derivatives.

3. Generalized symmetries of the
RR equation

We are looking now for generalized symmetries of the
form (9) for the RR Eq. (1) in the particular case a =
B = 1 [4]. By an appropriate scaling of the indepen-
dent variables, the original equation can be reduced to
the form:

Jwi¥) = 0.
(12)

Wt — WWy + Wiy = Wt_K(t:X:W:Wx:"'

The symmetry Eq. (11) then becomes:

BQ m BQ i
o +; aWLl.)DX(K(t,x,W,--- ,wf”))

—Z mD’ (Q(toxw, - wi™)) . (13)

We have to note that it is not at all compulsory that the
maximum order m of derivatives that appear in Q should
be the same as the order of the studied equation (in our
case 4). We will search for solutions of (13) supposing that
the order m of Q[w] is successively 0, 1, 2,.., and splitting
Eq. (13) into a system of coefficients of the highest-order
derivatives of w.

Let us start with the Oth order, where we have to consider
Q = Q(t,x,w). Eq. (13) holds if and only if

00
3t = 0,
0’0
w2 = 0
00(t, x, w(t, x))
DxiaW = 0, (14)
aQ QWX = 0,

for all the solutions w of Eq. (12). The second and the
third equations imply that Q is linear in w and Q,, does
not depend on x, that is Q = f(t)w + g(t, x). From the
last equation it is simple to conclude that f = g = 0.
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At order 1, consider Q = Q(t, x, w, wy). Eq. (13) implies a
system of 9 partial differential equations in Q, which can
be reduced to

2 2 2 2 2
FO_P0_ F0 _ 20 _ 20 _

ow2  ow?  dwdw, Owdx  Ow,0x -
and
00
il — 1
o +0,=0 (16)

for all the solutions w of Eq. (12). The first and second
equations give Q = f(t, x, w)w, + g(t, x, w) under the sup-
plementary conditions (derived from the others equations):

of of dg dg dg _ of
T ow ox ow ot a9 (V)
Egs. (17) admits the solution f(t) = —bt + a and g = b,
where @ and b are arbitrary constants. One obtains the
characteristic Q; = a(1 — tw,) + bw, and the generalized
evolutionary symmetries

Ug, = [a(1 — twy) + bw, )0, . (18)

1

It is a two-parameters symmetry operator spanned by two
infinitesimal symmetries:

U =0, U =td +0d,. (19)

The first one of this operators represents a classical trans-
lation along the x-axis, and it is useful to determine some
special solutions of the RR equation. The characteristic
Eq. (8) for Uy is

dx dt dw

TTo0T T 20)
and determines two invariants /4 = t and L, = x/t — w.
Now, if we look for some solution of the RR Eq. (12) of
the form w(x,t) = x/t — O}(t), where the variable x is
considered here as a simple parameter, one obtains the
reduced equation

2
O(t) = Ol — 3 - 21)

The solution of (21), obtained with MAPLE, is

t st
ou(t) = 2 —2e'x [ ds + Ae', (22)
0 :

—0Q

where A is an arbitrary number.

For order 2, if we consider Q = Q(t, x, w, wy, wy,), Eq. (13)
implies an over-determined system of differential equa-
tions for Q. We find the following conditions among these
equations:

2’0 2’0 2’0 2’0

OWZ,  OW, 0wy, 0wy, Ow  Ow,,0x 0 (23)

So we have to consider Q = h(t)w,, + k(t, x, w, wy). Sub-
stituting this form of Q in (13), the term containing the
higher-order derivative in w leads to

Aww,  Winx = 0. (24)

As (24) must be valid for any w, it is compulsory to set
h =0. So Q cannot depend on second-order derivatives
of w.

In general, if we consider Q = Q (t,x, W, Wy, ..., Wi”)) with

n > 2, the symmetry-determining Eq. (13) is

00 <& 90
E + ; aW)((l) DX(WWX - Wxxxx)

:QI+WXQ+WDXQ_D;‘Q:0‘ (25)
This equation can be split by a procedure similar to that

in the case n = 2 into an over-determined system that
contains all the equation of the form:

2?0
ol ow - (26)
(forany i = 2,...,n and j = 0,...,n, resulting in the

explicit expression of the right-hand side of Eq. (25)). We

conclude that Q must be linear in WL") and of the form:

Q = f(t, )W + g(t, x,w,w,). (27)

Inserting this expression of Q into (25), one can isolate
the term containing the higher-order derivative in w:

4wl (28)

As (25) must be valid for any w, it is compulsory to take
f=1(t).

Using the particular expression Q = f(t)wi”) +
g(t,x,w,wy) in (25) and splitting the obtained equation
into monomials expressed in the derivatives of w, one ob-
tains a system that contains

fuw!™) =0. (29)

Then f =0, and the RR equation cannot have generalized
evolutionary symmetries of order n > 1. All the gener-
alized symmetries of Eq. (12) are spanned by two very
simple symmetry operators: Uy = d, and U, = —t0, +0,,.
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4. Potential symmetries of the RR
equation

In [1], a method for finding new classes of symmetries for
a PDE has been described. By writing a given PDE,
denoted by Alx,t,w] = 0, in a conserved form, a re-
lated system denoted by S[x, t, w,v] = 0 with potential
v as an additional dependent variable is obtained. If a
set {w(x, t), v(x, t)} satisfies S[x, t,w,v] = 0, then w(x, t)
solves Alx, t,w] = 0, and v(x, t) solves the integrated re-
lated equation T[x, t,v] = 0. Any Lie group of point trans-
formations admitted by S[x, t, w, v] = 0 induces a symme-
try for Alx, t, w] = 0. When at least one of the generators
of the group depends explicitly on the potential v, then
the corresponding symmetry is neither a point nor a Lie—
Backlund symmetry. These symmetries of Alx, t,w] = 0
are called potential symmetries.

We will now apply this method to the case of the RR equa-
tion. We will follow the steps in [13], where the potential
symmetries of the Burgers equation

Ug—Uly+ Uy =0

have been studied. In order to find the potential symme-
tries of the RR Eq. (12), we will rewrite the equation in a
conserved form:

Wy — (%WZ—WW) =0. (30)

From this conserved form, the associated auxiliary system

S[x,t,w,v] =0 is given by:

{ he (31)

Vi = iW — Wyxx-

The integrated related equation is obtained by eliminating
the w variable from (31):

1
Vi — 7\/ + Vaxxx = Vt —

5V Ki[v]=0. (32)

We are looking for the generalized symmetries of the in-
tegrated related Eq. (32). The symmetry Eq. (11) for the
mth order generalized symmetry Uy is written as:

4

%9, Z ¥ DL(Ky[v Z a/<(1 Q) =0. (33)

—0 Vx

The analysis of the existence of the generalized symme-
tries for (32) is similar to the case of the symmetries of (12)
described in the previous section.

At order 0O, if we consider Q = Q(t, x,v), Eq. (33) holds
if and only if Q = 0. In the case when Q = Q(t, x, v, v),
Eq. (33) gives rise to a system of determining equations
for the characteristic Q of the evolutionary symmetry Qa%;
the first of these are:

0 _ 90 _ &0 _ o0
vz dvdv  dv,ox  ov?

=0. (34)

These equations give Q = f(t, x)v, + g(t, x, v) under the
supplementary conditions derived from Eq. (33):

¥g of g of
W " T x> &

The general solution of the system (35) is

f(t)=a(t)+c gl 1) =—a'(t)x+b(t)

for arbitrary reqular functions a(t) and b(t), and a constant
c.

Consequently, the evolutionary generalized symmetry is

U =[(a(t) + v + (b(t) — o'()x)]0, - (36)

Then the integrated Eq. (32) admits an infinite-parameter
Lie group of point symmetries corresponding to the in-
finitesimal generators:

U1 = ;X
Ul = g2 —xa'()2, (37)
Ugb(t)) = (t)av'

The first generator correspond to a general translation
along the x-axis, and it was already identified in the pre-
vious section. The other two operators, U(;(t)) and Uf,bm),
define an infinite algebra and can be identified as new,
potential-type symmetries for the RR Eq. (12).

With an approach similar to that for the case of general-
ized symmetries of RR equation, we can prove that Eq. (32)
does not posses any other higher-order potential symme-
tries.

5. Concluding remarks

We investigated the problem of the existence of general-
ized and potential symmetries of the RR equation using
the classical Lie approach and the Bluman complementary
method. Important in itself, the RR equation also repre-
sents at the same time a good toy model of a fourth-order
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differential equation that can be investigated with these [12] L. A. Ostrovsky, O. V. Rudenko, Acoust. Phys.+,

techniques. The symmetries of other fourth-order equa- DOI:10.1134/51063771009060049
tions, as for example Calabi flow equation, have been in- [13] M. L. Gandarias, Nonlinear Anal.-Theor. 71, 1826
vestigated in [7]. The main results we obtained for the RR (2009)

equation can be summarized as follows:

(i) The group of classical Lie symmetries for the RR
Eq. (12) is generated by two operators U; = 0d,,
which is a simple translation along the x-axis, and
U, = td,+0,, which is a non-trivial symmetry. The
class of solution invariants for the group of symme-
tries generated by U, have the form (see (22)):

t

% eS[
wix, t) = —= + 2e'x —ds — Ae', (38)
t s

—00

where A is an arbitrary parameter.

(ii) The RR equation admits an infinite-parameter Lie
group of potential symmetries, generated by the in-
finitesimal generators Uga(t)) and Ugbm) from (37).
We have to note that in our approach we have used
a form of the generalized symmetry operator U in
terms of its characteristic Q, as in (9). The de-
termination of explicit conservation laws and the
search for solutions associated with the symmetries
we found will be done in a forthcoming paper.
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