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Abstract: Quantum recurrence theorem holds for quantum systems with discrete energy eigenvalues and fails to hold
in general for systems with continuous energy. We show that during quantum walk process dominated by
interference of amplitude corresponding to different paths fail to satisfy the complete quantum recurrence
theorem. Due to the revival of the fractional wave packet, a fractional recurrence characterized using
quantum Pólya number can be seen.
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1. Introduction

In the dynamics of physical systems, from free particlesto stellar dynamics, the recurrence phenomenon have sig-nificantly contributed to the better understanding of thesystems dynamics [1]. For a classical conservative sys-tem, whether discrete or continuous in time, the Poincarérecurrence theorem states that any phase-space configu-ration (q, p) of a system enclosed in a finite volume willbe repeated as accurately as one wishes after a finite in-terval of time (with no restriction on the interval) [2, 3]. Asimilar recurrence theorem is shown to hold in quantumtheory as well [4, 5]. In a system with a discrete energyeigenvalue spectrum {En}; if Ψ(t0) is its state vector atthe time t0 and ε is any positive number, at least one time
∗E-mail: cmadaiah@iqc.ca

T will exist such that the norm of the vector Ψ(T )−Ψ(t0),
|Ψ(T )−Ψ(t0)| < ε. (1)

Revival of wave packet and its recurrence has attractedconsiderable attention [6], where the dynamics of wavepacket in one-dimension has been investigated [7, 8]. Re-vival of wave packet is in close analogy to the Talbot-effecttermed as quantum carpet [9] and Talbot-effect has beenexperimentally observed in waveguide arrays [10]. Revivaland recurrence probability has also been studied in boththe variants of quantum walk (QW), discrete-time quan-tum walk (DTQW ) [11–14] and continuous-time quantumwalk (CTQW) [15, 16].Quantum walks (QWs) are the quantum analog of the dy-namics of classical random walks (CRWs) [17–19]. The QWinvolves superposition of states and moves simultaneouslyexploring multiple possible paths with the amplitudes cor-responding to different paths interfering with one another.This makes the variance of the QW on a line to grow
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quadratically with the number of steps compared to thelinear growth for the CRW. Due to the speedup, the QWhas emerged as a powerful approach to quantum algorithmdesign [20–23]. QW has also been used to demonstrate thecoherent quantum control over atoms and realize quantumphase transition from Mott insulator to superfluid sate andvice versa [24], to explain the phenomenon such as, thebreakdown of an electric-field driven system [25] and thedirect experimental evidence for wavelike energy transferwithin photosynthetic systems [26, 27].Many properties of the dynamics of the CRW are verywell understood and several analogous properties havebeen studied in both the variants of the QW. Recurrencein DTQW differ significantly from the recurrence in CRW.For CRW we can consider the recurrence probability p0(t),that is, the probability of the periodicity of the dynamicsthat the particle returns to the origin during the time evo-lution (t steps). It is characterized by the Pólya number
Pcrw ≡ 1− 1

∞∑
t=0 p0(t) . (2)

If the Pólya number equals one, the CRW is recurrent,otherwise the walk is transient, i.e., with non-zero proba-bility the particle never returns to the origin. For a CRWto be transient the series ∑∞
t=0 p0(t) must converge [28].Pólya proved that the one- and two- dimensional CRWare recurrent [29], and for each higher dimension a uniquePólya number is associated while the CRWs are transient.In standard quantum mechanics, initially localized wavepacket in state |Ψ(0)〉 at t = 0 which can spread signif-icantly in a closed system can also reform later in theform of a quantum revival in which the spreading reversesitself and the wave packet relocalizes [6]. The relocal-ized wave packet can again spread and the periodicity inthe dynamics can be seen validating the quantum recur-rence theorem. The time evolution of a state |Ψ(t)〉, or awave function Ψ(x, t) is given by a deterministic unitarytransformation associated with the Hamiltonian. Duringquantum evolution we deal with the amplitudes and theprobability density p(x, t) = |Ψ(x, t)|2 at position x aftertime t, appears only when we collapse the wave packet toperform measurement.Unlike standard wave packet spreading 1, the QW spreads

1 During standard wave packet spreading, a wave packet
which is initially Gaussian, spreads retaining the Gaus-
sian shape causing increase in the full-width at half max-
ima (FWHM).

the wave packet in multiple possible paths with the am-plitudes corresponding to different paths interfering.In this paper we show that during the evolution of QW, theinterference effect and entanglement between the particleand position space delocalizes the wave packet over theposition space as small copies of the initial wave packet.These delocalized copies of fractional wave packet fails tosatisfy the complete quantum recurrence theorem. How-ever, due to the revival of the fractional wave packets, afractional recurrence can be seen in QW. The probabilisticcharacterization of the QW using quantum Pólya numberdefined in Ref. [12] shows fractional recurrence nature ofQW. We also show the exceptional cases of QW that canbe constructed by suppressing or minimizing the interfer-ence effect and get close to the complete recurrence.In Sec. 2 we briefly describe the standard variants of thediscrete-time QW (DTQW) and the continuous-time QW(CTQW). In Sec. 3 we revisit the quantum recurrence theo-rem. In Sec. 4 we discuss the quantum recurrence theoremfor QW and show the fractional recurrence nature of theQW on a line and an n−cycle before concluding in Sec. 5.
2. Quantum walk
The study of QWs has been largely divided into two stan-dard variants: discrete-time QW (DTQW) [19, 30, 31] andcontinuous-time QW (CTQW) [32]. In the CTQW, thewalk is defined directly on the position Hilbert space Hp,whereas, for the DTQW it is necessary to introduce anadditional coin Hilbert space Hc , a quantum coin opera-tion to define the direction in which the particle amplitudehas to evolve. Connection between these two variants andthe generic version of QW has also been studied [33, 34].However, the coin degree of freedom in the DTQW is anadvantage over the CTQW as it allows the control of dy-namics of the QW [23]. For example, by using a threeparameter U(2) or an SU(2) operator as quantum coin op-eration, the dynamics can be controlled by varying theparameters in the coin operation [35]. Therefore, we takefull advantage of the coin degree of freedom and study therecurrence nature using DTQW.The DTQW is defined on the Hilbert space H = Hc ⊗
Hp where, Hc is the coin Hilbert space and Hp is the
position Hilbert space. For a DTQW in one-dimension,
Hc is spanned by the basis state of the particle |0〉 and
|1〉, and Hp is spanned by the basis state of the position
|ψx〉, x ∈ Z. To implement the DTQW, we will consider athree parameter U(2) operator Cξ,θ,ζ of the form

Cξ,θ,ζ ≡
(

eiξ cos(θ) eiζ sin(θ)
e−iζ sin(θ) −e−iξ cos(θ)

) (3)
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as the quantum coin operation. The quantum coin opera-tion is applied on the particle state (Cξ,θ,ζ ⊗ 1) when theinitial state of the complete system is,
|Ψ0〉 = (cos(δ)|0〉+ eiη sin(δ)|1〉)⊗ |ψ0〉. (4)

In the above expression cos(δ)|0〉+eiη sin(δ)|1〉 is the stateof the particle and |ψ0〉 is the state of the position. Thequantum coin operation on the particle is followed by theconditional unitary shift operation S which delocalizes thewave packet over the position (x − 1) and (x + 1),
S = exp (−iσz ⊗ Pl) , (5)

P being the momentum operator and σz , the operator cor-responding to step of length l depending on the state ofthe particle respectively. The eigenstates of σz are de-noted by |0〉 and |1〉. Therefore, S can also be writtenas,
S = |0〉〈0| ⊗∑

x∈Z

|ψx−1〉〈ψx |+ |1〉〈1| ⊗∑
x∈Z

|ψx+1〉〈ψx |. (6)
The process of

Wξ,θ,ζ = S
(
Cξ,θ,ζ ⊗ 1

) (7)
is iterated without resorting to the intermediate measure-ment to realize large number of steps of the QW. δ and η inEq. (4) can be varied to get different initial state of the par-ticle. The three variable parameters of the quantum coin,
ξ , θ and ζ in Eq. (3) can be varied to change the prob-ability amplitude distribution in the position space. Byvarying the parameter θ the variance can be increased ordecreased as a functional form, σ 2 ≈ (1− sin(θ))t2, where
t is the number of steps (iteration). For a particle withsymmetric superposition as initial state the parameter ξand ζ introduces asymmetry in the probability distributionand their effect on the variance is very small [35].
3. Quantum recurrence theorem
Quantum recurrence theorem in the dynamics of the closedsystem states that there exist a time T when

|Ψ(T )−Ψ(t0)| < ε, (8)
where Ψ(T ) = |ΨT 〉 is the state of the system after time
T , Ψ(t0) = |Ψ0〉 is the initial state of the system and ε is

any positive number ≤ 2 (both Ψ(T ) and Ψ(t0) are nor-malized functions) [4, 5].The recurrence of complete state of the system or the exactrevival happens when all the expectation values of observ-ables A of the two states |ΨT 〉 and |Ψ0〉 are equal, thatis,
〈ΨT |A|ΨT 〉 = 〈Ψ0|A|Ψ0〉. (9)In classical dynamics, the characterization of the recur-rence nature can be conveniently done using probabilisticmeasures. Measurements on quantum system leaves thestate in one of its basis states with certain probability.Therefore, recurrence in quantum systems can be ana-lyzed using two cases of comparative evolution of thetwo identically prepared quantum system with the initialstates |Ψ0,0〉 at position x = 0 and time t = 0.

Case 1: Consider two identically prepared particle wavepacket which revive completely in position space at time
T . One of the two particle wave packet at position x =0 and time t = 0 is first evolved to spread in positionspace and then reverse the spreading till it relocalizescompletely at position x = 0 at time T . The measurementperformed on this particle will collapse the wave packetat the relocalized position with an expectation value

〈Ψ0,T |X |Ψ0,T 〉 = 〈Ψ0,0|X |Ψ0,0〉 = 1, (10)
where X is the position operator. After the measurement,the system is further evolved for an additional unit timeand the corresponding state can be given by |Ψx,TM+1〉, thesubscript M stands for the measurement being performedat time T . The second particle wave packet at position
x = 0 and time t = 0 is evolved up to time (T + 1)directly without any measurement being performed at time
T and the state can be written as |Ψx,T+1〉. Since boththe wave packets completely relocalize at position x = 0after the evolution for the time period T , irrespective ofthe measurement being performed, the expectation valuefor both the particle after time (T +1) would be identical,

〈Ψx,TM+1|X |Ψx,TM+1〉 = 〈Ψx,T+1|X |Ψx,T+1〉, (11)
with x spanning over all the position space.
Case 2: Consider two identically prepared particle wavepacket which does not relocalize completely at position
x = 0 at time T , that is, revive fractionally or does notrevive at all. The measurement will collapse the wavepacket and return the expectation value

〈Ψ0,T |X |Ψ0,T 〉 = {0, absence of revival,1, fractional revival. (12)
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In this case the two identically prepared particle evolvedto time (T+1), one with a measurement being performed attime T and an other particle without any measurement be-ing performed, will not return the same expectation value,that is,
〈Ψx,TM+1|X |Ψx,TM+1〉 6= 〈Ψx,T+1|X |Ψx,T+1〉 (13)

at some positions x in the entire position space. If thewave packet does not review at position x = 0, the lefthand side of Eq. (13) returns a expectation value 0 forall position x and the right hand side returns 1 for someposition x showing the transient nature of the dynamics.Therefore in most of the cases, a non-zero values in boththe expectation values in the inequality can act as a sig-nature of the fractional recurrence of the quantum state attime T and a zero expectation value on the left hand sideshows transient dynamics.From the above analysis we can conclude that, if the sys-tem is completely recurrent irrespective of the measure-ment at time T , the two states |Ψx,TM+1〉 and |Ψx,T+1〉 willbe equal to one another.
4. Fractional recurrence of quantum
walk
4.1. On a line
The state of the particle wave packet after implementingthe DTQW of t steps on a line with unit time required toimplement each step can be written as

∑
x
|Ψx,t〉 = W t

ξ,θ,ζ |Ψ0,0〉 =∑
x
ax |Φx,t〉, (14)

|Φx,t〉 is the state of the delocalized wave packet ateach position x in Hp of any dimension and |Ψ0,0〉 isthe state of the wave packet before implementing theQW. In the QW process which involves a deterministicunitary evolution, the particle wave packet spreads overthe position space forming a small copies of the initialwave packet. During this delocalization process the smallcopies of the initial wave packet interfere and entanglethe position and coin Hilbert space, Hp and Hc . Theinterference and the entanglement between the Hp and
Hc during the standard QW evolution does not permitcomplete relocalization of the wave packet at initialposition after any given number of steps t. Thereforethe argument leading to Eq. (12) and Eq. (13) holds toshow that the complete recurrence of the quantum statedoes not occur during the evolution of the QW process

Figure 1. The plot of [1− p0(t)], where p0(t) is the probability of par-
ticle at the origin with t being the number of steps in the
DTQW evolution. The plot for QW on a line using differ-
ent coin operation parameter θ = 15°, 45°, and 75° is
shown. With increase in θ, the quantum Pólya number
which characterizes the fractional recurrence nature of the
QW also increases. The plot with θ = 0° is for a walk on an
n−cycle with a completely suppressed interference effect,
here n = 51. For a walk to be completely recurrent, there
should exist a t = T where [1 − p0(T )] = 0, any non-zero
value is used to characterize the fractional recurrence na-
ture of the QW and an absolute 1 for all t would show that
the QW is completely transient.

on a line. However, we note that there is an importantconceptual distinction between the full revival of thequantum state and complete relocalization of the DTQW.In the full revival of the quantum state, both the external(position) and internal (particle) degrees of freedomshould be in the same state as it was in the beginning.While for the DTQW, we are only considering the revivalof external (position) degree of freedom into account.Therefore we can state :
In DTQW evolution on a line and an n−cycle dominated
by interference of quantum amplitude2, there exist no
time T where the quantum state of the system revive
completely in position degree of freedom and repeat the
delocalization and complete revival at regular interval of
time (recur).
The above statement can also be quantified in the follow-ing way: After implementing QW, the wave function de-scribing the particle at position x and time t can be written
2 By choosing extreme value of θ (0 or π/2) in the
quantum coin operation, quantum walk on a line can
be evolved without constructive or distractive interference
taking place.
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as a two component vector of amplitudes of particle be-ing at position x at time t with left and right propagatingcomponent
|Ψx,t〉 = ( ΨL(x, t)ΨR (x, t)

)
. (15)

Lets analyze the dynamics of DTQW on wave packetΨ(x, t) driven by single parameter quantum coin
C0,θ,0 = ( cosθ sinθsinθ − cosθ

) (16)
and shift operator S (W0,θ,0 = S(C0,θ,0 ⊗ 1)). In terms ofleft and right propagating component it is given by

ΨL(x, t + 1) = cosθΨL(x + 1, t) + sin θψR (x − 1, t),ΨR (x, t + 1) = sinθΨL(x + 1, t)− cosθΨR (x − 1, t).(17)
Then the probability of wave packet being at position xand t is

p(x, t) = |ΨL(x, t)|2 + |ΨR (x, t)|2. (18)
and sum of probability over the entire position space is

∑
x
p(x, t) = 1. (19)

After time t with unit time required to implement eachstep of the quantum walk on a line will be spread between
x = −t to x = +t and the wave function over the positionspace is

t∑
x=−t Ψ(x, t) = t∑

x=−t
[ΨR (x, t) + ΨL(x, t)] . (20)

It should be noted that for even number of steps, amplitudeat odd labeled positions is 0 and for odd number of steps,amplitude at even labeled positions is 0.For CRW, each step of walk is associated with the random-
ness and the probability of the entire particle therefore,however small the probability is at the origin, it is at-tributed to the recurrence of the entire particle. Whereas,for the DTQW evolution shown in Eq. (17) we find thatthe coin degree of freedom is carried over during the dy-namics of the walk making it reversible. The randomnessand the probability comes into consideration only whenthe wave packet is collapsed to discard the signature of

the coin degree of freedom. Therefore, for a DTQW to becompletely recurrent, the condition
p(0, t) = |ΨL(0, t)|2 + |ΨR (0, t)|2 = 1 (21)

has to be satisfied for some time t. Probability at originafter any time t, p(x, t) < 1 shows the fractional recur-rence nature of the QW. From Eqs. (17) and (18) we canconclude that the Eq. (21) is satisfied only when θ = π/2and t is even, that is when there is no interference of thequantum amplitudes. For θ = 0 the two left and rightcomponent move in opposite direction without returningand for any 0 < θ < π/2 we get p(x, t) < 1 showing thefractional recurrence of the QW.Alternatively, using quantum Fourier analysis to study theevolution of the DTQW on a line, it is shown that theamplitude at the origin decreases by O(1/√t). To a verygood approximation, independent of position x it has alsobeen shown that the amplitude decrease by O(1/√t) (xbeing the points between the two dominating peaks inthe distribution) [11]. Therefore,
〈Ψx,t |Ψx,t〉 = O

(1
t

)
< 1, (22)

and there exists no time T = t where the walk is com-pletely recurrent, whereas QW on a line shows a fractionalrecurrence nature.A probability based characterization of the recurrence na-ture of the QW, quantum Pólya number was defined for anensemble of identically prepared QW systems by the ex-pression
Pqw = 1− ∞∏

t=1 [1− p0(t)] , (23)
where p0(t) is the post measurement recurrence probabil-ity of the particle. Each identically prepared particle issubjected to different number of steps of QW from 1 to ∞and the probability of the particle at the origin is mea-sured and discarded [12]. The probability that the particleis found at the origin in a single series of such measure-ment records is the quantum Pólya number. The quantumPólya number was calculated for various coined QWs andit is shown that in the higher dimension it depends bothon the initial state and the parameters in the coin op-erator whereas, for CRW the Pólya number is uniquelydetermined by its dimensionality [36].To show the QW to be completely recurrent adopting aprobability based characterization given by Eq. (23) needsto have at least one of the many particle, each evolvedto different steps t from 1 to ∞ to return p0(t) = 1. If0 < p0(t) < 1 for any t, then only with certain probability
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p0(t) the wave packet collapses at x = 0, that is, priorto measurement the particle existed in superposition ofposition space. If 0 < p0(t) < 1 for all the particlesevolved to different steps from 1 to ∞ then the fractionalrecurrence of the QW is characterized by the Pqw .In Fig. 1 the plot of [1 − p0(t)] is shown for a DTQWon a line where the different coin operation parameter
θ = 15°, 45°, 75°. With increase in θ, the quantum Pólyanumber which can also be called as fractional recurrencenumber, Pqw also increases.
4.2. On an n−cycle
An n-cycle is the simplest finite Cayley graph with n ver-tices, number of position in the Hp. This example hasmost of the features of the walks on the general closedgraphs. The unitary shift operation S, Eq. (6) for a QWon an n−cycle is defined by
Sc = |0〉〈0| ⊗ n−1∑

x=0 |ψx−1 mod n〉〈ψx |

+ |1〉〈1| ⊗ n−1∑
x=0 |ψx+1 mod n〉〈ψx | (24)

and the quantum state after t steps of QW is written as
|Ψx,t〉 = W t

ξ,θ,ζ |Ψ0,0〉 = n−1∑
x=0 ax |Φx,t〉. (25)

The CRW approaches a stationary probability distributionindependent of its initial state on a finite graph. The timerequired to approach a stationary distribution is know asmixing time [37]. As we have discussed earlier in case ofCRW walk on a line, a non-zero probability is sufficientto show the recurrence of the entire particle subjectedto CRW and stationary distribution returns a non-zeroprobability.Unitary QW, does not converge to any stationary distri-bution on an n−cycle. But by defining a time-averageddistribution,
p(x, T ) = 1

T

T−1∑
t=0 p(x, t), (26)

obtained by uniformly picking a random time t between 0and (T − 1), and evolving for t time steps and measuringto see which vertex it is at, a convergence in the prob-ability distribution can be seen even in quantum case.It has been shown that the QW on an n-cycle mixes intime M = O(n logn), almost quadratically faster than the

Figure 2. Probability distribution of a quantum walker on an n-cycle
for different value of θ using coin operation C0,θ,0, where n,
the number of position, is 101. The distribution is for 200
cycles. We note that the mixing is faster for lower value of
θ.

classical case which is O(n2) [37]. The mixing time canbe optimized on an n− cycle by choosing a lower valueof θ in W0,θ,0 [35]. Fig. 2 is the time averaged probabilitydistribution of a quantum walk on an n-cycle graph after
n logn time where n is 101. It can be seen that the varia-tion of the probability distribution over the position spaceis least for θ = 15° compared to θ = 45° and θ = 75°.Uniform distribution in quantum case does not reveal thecomplete recurrence nature of the particle like it does inclassical case.In Fig. 3 we show numerically that the probability of find-ing the particle at the initial position x = 0 after differentnumber of steps of QW on 15− and 24− cycle. The distri-bution is obtained without time-averaging for up to stepsas large as 5000. At no time t =number of steps, a unitprobability value is returned showing that wave packetevolved using QW fail to revive complete at the initialposition.The failure of the wave packet to completely revive atinitial position and recur can be attributed to the inter-ference effect caused by the mixing of the left and rightpropagating components of the amplitude. By suppress-ing the interference effect during the evolution in a closedpath, one can get closer to the complete relocalization, re-vival at initial position x0. For example, the wave packetcan be completely relocalized at x = 0 on an n−cycleafter T = n and make the QW recurrent by choosing anextreme value of coin parameters (ξ, θ, ζ) = (0°, 0°, 0°) inEq. (3) during the QW evolution. However θ = δ, δ beingvery small and close to 0°, where the interference effect isminimized, will also return a near complete recurrence onan n−cycle. In Fig. 1 the plot of [1− p0(t)] is also shown
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a)

b)

Figure 3. Probability at the initial position after different number
of steps of quantum walk on 15− and 24− cycle. This
clearly shows that even for steps as large as 5000, there
is no signature of complete recurrence. The distribution is
obtained using Hadamard operation, C0,π/4,0 as quantum
coin operation.

for a particular case where the QW shows the completerecurrence nature, a walk on an n−cycle with θ = 0° and
n = 50. The interference effect is completely suppressedand the quantum recurs after every 50 steps.From the numerical data for upto 5000 steps of quantumwalk we note that for small n−, especially when n iseven, the left and right propagating amplitude return backcompletely to the initial position (origin) before the mixingand repeated interference of the amplitudes takes over atnon-initial position in the evolution process. Therefore,for a QW on an n−cycle with n being even upto 8, acomplete revival and recurrence of wave packet at initialposition x = 0 is seen in Fig. 4 [38]. For a QW on particleinitially in symmetric superposition state

|Ψ0〉 = 1√2 (|0〉+ i|1〉)⊗ |ψ0〉 (27)

a)

b)

Figure 4. Probability at the initial position on 8−cycle. (a) The distri-
bution is obtained using Hadamard coin operation C0,45°,0,
due to return of amplitudes to initial position (constructive
interference at the origin) before interference of amplitude
dominates uniformly over the entire vertices, recurrence is
seen. (b) The use of quantum coin, C0,30°,0 during the evo-
lution does not lead to complete constructive interference
at the origin and hence complete recurrence is not seen.

with coin operation C , Eq. (16) and even n > 8, due tolarger position Hilbert space the interference effect at thenon-initial position dominates reducing the recurrence na-ture of the dynamics. In Fig. 5 for QW on 10−cycle, smalldeviation from complete recurrence is shown.
For example, we will consider a small odd number, n = 5,if the position are marked as x = 0, 1, 2, 3, 4, during thethird step of the QW, the left propagating amplitude movefrom position 2 to 3 and the right propagating amplitudemove from 3 to 2. That is, after the second and third step ofquantum walk using shift operator of the form Sc , Eq. (24)and Hadamard operation H = C0,45°,0 as coin operationon a particle initially in superposition state Eq. (27) takes
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a)

b)

c)

Figure 5. Probability at the initial position on 10−cycle. The distribu-
tion is obtained using Hadamard operation C0,45°,0. A small
deviation from the complete recurrence can be seen. (a)
and (b) are probability at initial position for quantum walk
up to 250 steps and 5000 steps respectively and (c) is the
close up of the probability and we note that the probability
is not exact 1 at any time within 5000 steps.

the form,
Sc(H ⊗ 1)Sc|Ψ0〉 = 12 {|0〉 ⊗ |ψ3〉+( |1〉+ i|0〉 )⊗|ψ0〉 − i|1〉 ⊗ |ψ2〉} , (28)

Sc(H ⊗ 1)Sc(H ⊗ 1)Sc|Ψ0〉 = 12√2 {|0〉 ⊗ |ψ2〉
+ (|0〉+ |1〉+ i|0〉)⊗ |ψ4〉

− (|1〉 − i|0〉+ i|1〉)⊗ |ψ1〉+ i|1〉 ⊗ |ψ3〉} . (29)
The left and right propagating amplitude crossover with-out suppressing the mixing, therefore the constructive in-terference effect continues to exist at position other thanorigin during the evolution. In Fig. 6 the probability offinding the particle at the initial position is shown. Dueto the small size of the Hilbert space, the probability isseen to be close to unity but the closer look reveals thatits only a fraction revival.We also note that localization effect found in 2D [39] orfound in QWs using multi quantum coins to diminish theinterference effect [40] can result in increasing the frac-tional recurrence number Pqw on a line and higher dimen-sion. If the particle wave packet is evolved in a positionHilbert space HP with the edges that permits the wavepacket to escape, the fractional recurrence nature of theQW does not allow the QW to be completely transient.Therefore, the fractional transient nature of the QW isseen to complement the fractional recurrence nature.
5. Conclusion
In summary we show that, as long as the wave packetspread in position space interfering, forming small copiesof the initial wave packet during the evolution of the QWprocess, it fails to satisfy the complete recurrence theorem.We show this by analyzing the dynamics of quantum walkprocess on a line and on an n−cycle. We have shownthat due to the revival of the fractional wave packet, afractional recurrence can be seen during the QW processwhich can be characterized using the quantum Pólya num-ber or fractional recurrence number.
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a)

b)

Figure 6. Probability at the initial position after different number of
steps of QW on 5−cycle, (a) is the complete plot whereas
(b) is a close up of probability values between 0.9 and 1. At
no step in the plot, probability is a unit value. This numer-
ically shows that the QW on an n− cycle does not recur
for n=5.

References

[1] S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)[2] Luis Barreira, Poincaré recurrence: old and new,IVth International Congress on Mathematical Physics(World Scientific, 2006) 415[3] U. Krengel, Ergodic Theorems (Walter de Gruyter,Berlin, New York, 1985)[4] P. Bocchieri, A. Loinger, Phys. Rev. 107, 337 (1957)[5] L. S. Schulman, Phys. Rev. A 18, 2379 (1978)[6] R. W. Robinett, Phys. Rep. 392, 1 (2004)[7] M. V. Berry, J. Phys. A 29, 6617 (1996)[8] F. Grobmann, J. M. Rost, W. P. Schleich, J. Phys. A30, L277 (1997)[9] M. Berry, I. Marzoli, W. Schleich, Phys. World 14, 39(2001)[10] R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides,

G. I. Stegeman, Phys. Rev. Lett. 95, 053902 (2005)[11] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, J.Watrous, Proceeding of the 33rd ACM Symposium onTheory of Computing (ACM Press, New York, 2001)60[12] M. Stefanak, I. Jex, T. Kiss, Phys. Rev. Lett. 100,020501 (2008)[13] M. Stefanak, T. Kiss, I. Jex, New J. Phys. 11, 043027(2009)[14] Norio Konno, arXiv:0908.2213v3[15] O. Mülken, A. Blumen, Phys. Rev. E 71, 036128 (2005)[16] O. Mülken, A. Blumen, Phys. Rev. E 73, 066117 (2006)[17] G. V. Riazanov, Sov. Phys. JETP-USSR 6, 1107 (1958)[18] R. P. Feynman, A. R. Hibbs, Quantum Mechanics andPath Integrals (McGraw-Hill, New York, 1965)[19] Y. Aharonov, L. Davidovich, N. Zagury, Phys. Rev. A48, 1687 (1993)[20] A. M. Childs et al., Proceedings of the 35th ACMSymposium on Theory of Computing (ACM Press,New York, 2003) 59[21] N. Shenvi, J. Kempe, K. B. Whaley, Phys. Rev. A 67,052307 (2003)[22] A. M. Childs, J. Goldstone, Phys. Rev. A 70, 022314(2004)[23] A. Ambainis, J. Kempe, A. Rivosh, Proceedings ofACM-SIAM Symp. on Discrete Algorithms (SODA)(AMC Press, New York, 2005) 1099[24] C. M. Chandrashekar, R. Laflamme, Phys. Rev. A 78,022314 (2008)[25] T. Oka, N. Konno, R. Arita, H. Aoki, Phys. Rev. Lett.94, 100602 (2005)[26] G. S. Engel et al., Nature 446, 782 (2007)[27] M. Mohseni, P. Rebentrost, S. Lloyd, A. Aspuru-Guzik,J. Chem. Phys. 129, 174106 (2008)[28] P. Révész. Random walk in Random and non-rendomEnvironments (World Scientific, Singapore, 1990)[29] G. Pólya, Math. Ann. 84, 149 (1921)[30] D. A. Meyer, J. Stat. Phys. 85, 551 (1996)[31] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, J.Watrous, Proceeding of the 33rd ACM Symposium onTheory of Computing (ACM Press, New York, 2001)60[32] E. Farhi, S. Gutmann, Phys. Rev. A 58, 915 (1998)[33] F. Strauch, Phys. Rev. A 74, 030310 (2006)[34] C. M. Chandrashekar, Phys. Rev. A 78, 052309 (2008)[35] C. M. Chandrashekar, R. Srikanth, R. Laflamme, Phys.Rev. A 77 032326 (2008)[36] M. Stefanak, I. Jex, T. Kiss, Phys. Rev. A 78, 032306(2008)[37] D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani, Pro-ceeding of the 33rd ACM Symposium on Theory ofComputing (ACM Press, New York, 2001) 50
987



Fractional recurrence in discrete-time quantum walk

[38] B. Tregenna, W. Flanagan, R. Maile, V. Kendon, NewJ. Phys. 5, 83 (2003)[39] N. Inui, Y. Konishi, N. Konno, Phys. Rev. A 69, 052323(2004)[40] N. Inui, N. Konno, E. Segawa, Phys. Rev. E 72,056112 (2005)

988


	Introduction
	Quantum walk
	Quantum recurrence theorem
	Fractional recurrence of quantum walk
	Conclusion
	Acknowledgements
	References



