Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 24, 2010

Dynamical properties of an asymmetric bistable system with quantum fluctuations in the strong-friction limit

Chunhua Zeng, Ailing Gong and Chongwei Xie
From the journal Open Physics

Abstract

The dynamical properties of an overdamped Brownian particle moving in an asymmetric bistable system with quantum fluctuations are investigated. Within the strong-friction limit (the quantum Smoluchowski regime), the analytic expression for the relaxation time of the system is derived by means of the projection-operator method, in which the effects of the memory kernels are taken into account. Based on the relaxation time, we consider both the overdamped quantum case and its classical counterpart.In these contexts, the effects of the quantum fluctuations and the asymmetry of the potential are discussed. It is found that: (i) The quantum effects in an asymmetric bistable system on time scales of the relaxation process are more prominent for lower temperatures and smaller asymmetries of the potential. (ii) The quantum effects speed up the rate of fluctuation decay of the state-space variable for lower temperatures. (iii) The asymmetry of the potential first slows down the rate of fluctuation decay of the state-space variable and then increases it.

[1] H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1996) 10.1007/978-3-642-61544-3_4Search in Google Scholar

[2] S. Bouzat, H.S. Wio, Phys. Rev. E 59, 5142 (1999) http://dx.doi.org/10.1103/PhysRevE.59.514210.1103/PhysRevE.59.5142Search in Google Scholar PubMed

[3] H.S. Wio, S. Bouzat, Braz. J. Phys. 29, 136 (1999) http://dx.doi.org/10.1590/S0103-9733199900010001210.1590/S0103-97331999000100012Search in Google Scholar

[4] A. Nikitin, N.G. Stocks, A.R. Bulsara, Phys. Rev. E 68, 016103 (2003) http://dx.doi.org/10.1103/PhysRevE.68.01610310.1103/PhysRevE.68.016103Search in Google Scholar PubMed

[5] A. Nikitin, N.G. Stocks, A.R. Bulsara, Phys. Lett. A 334, 12 (2005) http://dx.doi.org/10.1016/j.physleta.2004.11.01310.1016/j.physleta.2004.11.013Search in Google Scholar

[6] A. Nikitin, N.G. Stocks, A.R. Bulsara, Phys. Rev. E 76, 041138 (2007) http://dx.doi.org/10.1103/PhysRevE.76.04113810.1103/PhysRevE.76.041138Search in Google Scholar PubMed

[7] Y. Jin, W. Xu, M. Xu, Chaos Soliton. Fract. 26, 1183 (2005) http://dx.doi.org/10.1016/j.chaos.2005.02.02610.1016/j.chaos.2005.02.026Search in Google Scholar

[8] L.-J. Ning, W. Xu, M.-L. Yao, Chin. Phys. 17, 486 (2008) http://dx.doi.org/10.1088/1674-1056/17/2/02410.1088/1674-1056/17/2/024Search in Google Scholar

[9] G. Lindblad, Commun. Math. Phys. 48, 119 (1976) http://dx.doi.org/10.1007/BF0160849910.1007/BF01608499Search in Google Scholar

[10] R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications (Springer, Berlin, 1982) Search in Google Scholar

[11] H. Spohn, Rev. Mod. Phys. 52, 569 (1980) http://dx.doi.org/10.1103/RevModPhys.52.56910.1103/RevModPhys.52.569Search in Google Scholar

[12] J. Ankerhold, P. Pechukas, H. Grabert, Phys. Rev. Lett 87, 086802 (2001) http://dx.doi.org/10.1103/PhysRevLett.87.08680210.1103/PhysRevLett.87.086802Search in Google Scholar PubMed

[13] J. Ankerhold, H. Grabert, Phys. Rev. Lett 101, 119903 (2008) http://dx.doi.org/10.1103/PhysRevLett.101.11990310.1103/PhysRevLett.101.119903Search in Google Scholar

[14] J. Ankerhold, H. Grabert, Phys. Rev. Lett 101, 169902 (2008) http://dx.doi.org/10.1103/PhysRevLett.101.16990210.1103/PhysRevLett.101.169902Search in Google Scholar

[15] R. Dillenschneider, E. Lutz, Phys. Rev. E 80, 042101 (2009) http://dx.doi.org/10.1103/PhysRevE.80.04210110.1103/PhysRevE.80.042101Search in Google Scholar PubMed

[16] J. Ankerhold, Phys. Rev. E 64, 060102(R) (2001) http://dx.doi.org/10.1103/PhysRevE.64.06010210.1103/PhysRevE.64.060102Search in Google Scholar PubMed

[17] B.-q. Ai, H. Zheng, H.-z. Xie, L.-g. Liu, Cent. Eur. J. Phys. 4, 270 (2006) http://dx.doi.org/10.2478/s11534-006-0010-510.2478/s11534-006-0010-5Search in Google Scholar

[18] U. Weiss, Quantum Dissipative Systems, 2nd edition (World Scientific, Singapore, 1999) http://dx.doi.org/10.1142/978981281787710.1142/4239Search in Google Scholar

[19] L. Machura, M. Kostur, P. Hänggi, P. Talkner, J. Luczka, Phys. Rev. E 70, 031107 (2004) http://dx.doi.org/10.1103/PhysRevE.70.03110710.1103/PhysRevE.70.031107Search in Google Scholar PubMed

[20] J. Łuczka, R. Rudnicki, P. Hänggi, Physica A 351, 60 (2005) http://dx.doi.org/10.1016/j.physa.2004.12.00710.1016/j.physa.2004.12.007Search in Google Scholar

[21] M. Łukasz, J. Łuczka, P. Talkner, P. Hänggi, Acta Phys. Pol. B 38, 1855 (2007) Search in Google Scholar

[22] C. Zeng, A. Gong, Y. Luo, Int. J. Mod. Phys. B (in press) Search in Google Scholar

[23] L. Machura, M. Kostur, P. Talkner, J. Luczka, P. Hänggi, Phys. Rev. E 73, 031105 (2006) http://dx.doi.org/10.1103/PhysRevE.73.03110510.1103/PhysRevE.73.031105Search in Google Scholar PubMed

[24] J. Casademunt, R. Mannellaetal, Phys. Rev. A 35, 5183 (1987) http://dx.doi.org/10.1103/PhysRevA.35.518310.1103/PhysRevA.35.5183Search in Google Scholar PubMed

[25] D.C. Mei, C.W. Xie, L. Zhang, Phys. Rev. E 68, 051102 (2003) http://dx.doi.org/10.1103/PhysRevE.68.05110210.1103/PhysRevE.68.051102Search in Google Scholar PubMed

[26] D.C. Mei, C.W. Xie, Y.L. Xiang, Physica A 343, 167 (2004) http://dx.doi.org/10.1016/j.physa.2004.05.05710.1016/j.physa.2004.05.057Search in Google Scholar

[27] F. Long, L.-C. Du, D.-C. Mei, Phys. Scripta 79, 045007 (2009) http://dx.doi.org/10.1088/0031-8949/79/04/04500710.1088/0031-8949/79/04/045007Search in Google Scholar

[28] C. Zeng, Chin. J. Phys. 48, 57 (2010) Search in Google Scholar

[29] C. Zeng, X. Zhou, S. Tao, Cent. Eur. J. Phys. 7, 534 (2009) http://dx.doi.org/10.2478/s11534-009-0035-710.2478/s11534-009-0035-7Search in Google Scholar

[30] S.A. Maier, J. Ankerhold, Phys. Rev. E 81, 021107 (2010) http://dx.doi.org/10.1103/PhysRevE.81.02110710.1103/PhysRevE.81.021107Search in Google Scholar PubMed

[31] J.M. Noriega et al., Phys. Rev. A 38, 5670 (1988) http://dx.doi.org/10.1103/PhysRevA.38.567010.1103/PhysRevA.38.5670Search in Google Scholar

[32] J.M. Noriega et al., Phys. Rev. A 44, 2094 (1991) http://dx.doi.org/10.1103/PhysRevA.44.209410.1103/PhysRevA.44.2094Search in Google Scholar

[33] A. Hernandez-Machado, M. San Miguel, J.M. Sancho, Phys. Rev. A 29, 3388 (1984) http://dx.doi.org/10.1103/PhysRevA.29.338810.1103/PhysRevA.29.3388Search in Google Scholar

[34] R.L. Stratonovich, In: R.L. Stratonovich (Ed.), Topics in the Theory of Random Noise (Gordon and Breach, New York, 1967) 223 Search in Google Scholar

[35] H. Fujisaka, S. Grossmann, Z. Phys. B Con. Mat. 43, 69 (1981) http://dx.doi.org/10.1007/BF0129547710.1007/BF01295477Search in Google Scholar

[36] C.W. Xie, D.C. Mei, Phys. Lett. A 323, 421 (2004) http://dx.doi.org/10.1016/j.physleta.2004.02.03410.1016/j.physleta.2004.02.034Search in Google Scholar

Published Online: 2010-9-24
Published in Print: 2011-2-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow