Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 26, 2011

Stochastic tumor growth system with two different kinds of time delay

  • Chun-Sheng Dou EMAIL logo , Di Li and Can-Jun Wang
From the journal Open Physics


The dynamical properties of a noise-driven tumor cell growth system are investigated when there exist two different kinds of time delays, in the deterministic and fluctuating forces, respectively. Using the approximation probability density approach, the delayed Fokker-Planck equation is obtained. The effects of two different time delays on the stationary probability distribution (SPD), the mean value and the mean passage time (MFPT) are discussed. It is found that the time delay τ1 in the deterministic force can enhance tumor cell number, while the time delay τ2 in the fluctuating force can induce a decrease in tumor cell numbers. On the other hand, while τ1 can hold back the extinction of tumor cells, τ2 can speed up their extinction.

[1] A. Longtin, A. Bulsara, F. Moss, Phys. Rev. Lett. 67, 656 (1991) in Google Scholar PubMed

[2] J.J. Collins, T.T. Imhoff, P. Grigg, Phys. Rev. E 56, 923 (1997) in Google Scholar

[3] C. Masoller, Phys. Rev. Lett. 88, 034102 (2002) in Google Scholar PubMed

[4] D. Huber, L.S. Tsimring, Phys. Rev. Lett. 91, 260601 (2003) in Google Scholar PubMed

[5] L.S. Tsimring, A. Pikovsky, Phys. Rev. Lett. 87, 250602 (2001) in Google Scholar PubMed

[6] D. Wu, S.Q. Zhu, Phys. Lett. A 363, 202 (2007) in Google Scholar

[7] L.R. Nie, D.C. Mei, Europhys. Lett. 79, 20005 (2007) in Google Scholar

[8] L.R. Nie, D.C. Mei, Phys. Rev. E 77, 031107 (2008) in Google Scholar PubMed

[9] D. Bratsun, D. Volfson, L.S. Tsimring, J. Hasty, PANS 41, 14593 (2005) in Google Scholar PubMed PubMed Central

[10] B.Q. Ai, X.J. Wang, G.T. Liu, L.G. Liu, Phys. Rev. E 67, 022903 (2003) in Google Scholar PubMed

[11] D.C. Mei, C.W. Xie, L. Zhang, Eur. Phys. J. B 41, 107 (2004) in Google Scholar

[12] J.C. Cai, C.J. Wang, D.C. Mei, Chinese Phys. Lett. 24, 1162 (2007) in Google Scholar

[13] C.J. Wang, Q. Wei, D.C. Mei, Mod. Phys. Lett. B 21, 789 (2007) in Google Scholar

[14] C.J. Wang, Q. Wei, D.C. Mei, Phys. Lett. A 372, 2176 (2008) in Google Scholar

[15] C.J. Wang, Q. Wei, B.B. Zheng, D.C. Mei, Acta Phys. Sin.-Ch. Ed. 57, 1735 (2008) Search in Google Scholar

[16] L.B. Han, X.L. Gong, L. Cao, D.J. Wu, Chinese Phys. Lett. 24, 632 (2007) in Google Scholar

[17] W.R. Zhong, Y.Z. Shao, Z.H. He, Phys. Rev. E 73, 060902 (2006) in Google Scholar

[18] T. Bose, S. Trimper, Phys. Rev. E 79, 051903 (2009) in Google Scholar

[19] L.B. Han, Acta Phys. Sin.-Ch. Ed. 57, 6081 (2008) 10.7498/aps.57.6081Search in Google Scholar

[20] Y.F. Guo, W. Xu, Acta Phys. Sin.-Ch. Ed. 57, 2699 (2008) 10.7498/aps.57.2699Search in Google Scholar

[21] A. Lipowski, D. Lipowska, Physica A 276, 456 (2000) in Google Scholar

[22] J.C. Panetta, Appl. Math. Lett. 8, 83 (1995) in Google Scholar

[23] X.H. Gu, S.Q. Zhu, D. Wu, Eur. Phys. J. D 42, 461 (2007) in Google Scholar

[24] T.D. Frank, P.J. Beek, Phys. Rev. E 64, 021917 (2001) in Google Scholar PubMed

[25] D.J. Wu, L. Cao, S.Z. Ke, Phys. Rev. E 50, 2496 (1994) in Google Scholar

[26] K. Lindenberg, B.J. West, J. Stat. Phys. 42, 201 (1986) in Google Scholar

[27] J. Masoliver, B.J. West, K. Lindenberg, Phys. Rev. A 35, 3086 (1987) in Google Scholar PubMed

Published Online: 2011-2-26
Published in Print: 2011-6-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.9.2023 from
Scroll to top button