Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 3, 2011

Geometric phase decomposition in the basis of Hermite-Gaussian functions

Rimvydas Aleksiejunas and Vladislovas Ivaska
From the journal Open Physics

Abstract

The work presents geometric phase decomposition for analytical signals using Hermite-Gaussian functions. The decomposition is based on the time-frequency distribution with reassigned and multi-tapered spectrogram resulting in increased phase estimation resolution. Numerical analysis is applied to a number of SU(2) evolutions, such as spin-1/2 particle in a static and rotating magnetic field, as well as polarization rotation of a plane wave in optically active medium. Geometric phase decomposition results are provided also for quantum harmonic oscillator and a radiation field of an electric dipole exited by a short pulse.

[1] R. Aleksiejunas, V. Ivaska, J. Phys. A-Math. Gen. 34, 8835 (2001) http://dx.doi.org/10.1088/0305-4470/34/42/30810.1088/0305-4470/34/42/308Search in Google Scholar

[2] R. Aleksiejunas, V. Ivaska, J. Phys. A-Math. Gen. 33, 2383 (2000) http://dx.doi.org/10.1088/0305-4470/33/12/30610.1088/0305-4470/33/12/306Search in Google Scholar

[3] R. Aleksiejunas, V. Ivaska, Phys. Lett. A 235, 1 (1997) http://dx.doi.org/10.1016/S0375-9601(97)00584-710.1016/S0375-9601(97)00584-7Search in Google Scholar

[4] J. Anandan, J. Christian, K. Wanelik, Am. J. Phys. 65, 180 (1997) http://dx.doi.org/10.1119/1.1857010.1119/1.18570Search in Google Scholar

[5] M. Bayram, R. Baraniuk, In: W. J. Fitzgerald, R. L. Smith, A. T. Walden, P. C. Young, (Eds.), Nonlinear and nonstationary signal processing (Cambridge University Press, Cambridge, 2000) 292 Search in Google Scholar

[6] M. V. Berry, J. Phys. A-Math. Gen. 18, 15 (1985) http://dx.doi.org/10.1088/0305-4470/18/1/01210.1088/0305-4470/18/1/012Search in Google Scholar

[7] M. V. Berry, Proc. R. Soc. Lon. Ser. A 392, 45 (1984) http://dx.doi.org/10.1098/rspa.1984.002310.1098/rspa.1984.0023Search in Google Scholar

[8] R. Bhandari, Phys. Rep. 281, 1 (1997) http://dx.doi.org/10.1016/S0370-1573(96)00029-410.1016/S0370-1573(96)00029-4Search in Google Scholar

[9] R. Bhandari, Phys. Lett. A 157, 221 (1991) http://dx.doi.org/10.1016/0375-9601(91)90055-D10.1016/0375-9601(91)90055-DSearch in Google Scholar

[10] B. Boashash, Proceedings of the IEEE 80, 520 (1992) http://dx.doi.org/10.1109/5.13537610.1109/5.135376Search in Google Scholar

[11] P. Bracken, Cent. Eur. J. Phys. 6, 135 (2008) http://dx.doi.org/10.2478/s11534-007-0045-210.2478/s11534-007-0045-2Search in Google Scholar

[12] L. Cohen, Proceedings of the IEEE 77, 941 (1989) http://dx.doi.org/10.1109/5.3074910.1109/5.30749Search in Google Scholar

[13] I. Daubechies, IEEE T. Inform. Theory 34, 605 (1988) http://dx.doi.org/10.1109/18.976110.1109/18.9761Search in Google Scholar

[14] P. Flandrin, IEEE International conference on acoustics, speech, and signal processing, Apr., 11–14, 1988, New York, USA (IEEE, New York, 1988) 2176 Search in Google Scholar

[15] J. H. Hannay, J. Phys. A-Math. Gen. 18, 221 (1985) http://dx.doi.org/10.1088/0305-4470/18/2/01110.1088/0305-4470/18/2/011Search in Google Scholar

[16] V. Ivaska, V. Kalesinskas, Lith. J. Phys. 47, 267 (2007) http://dx.doi.org/10.3952/lithjphys.4730610.3952/lithjphys.47306Search in Google Scholar

[17] R. Jackiw, A. Kerman, Phys. Lett. A, 71, 158 (1979) http://dx.doi.org/10.1016/0375-9601(79)90151-810.1016/0375-9601(79)90151-8Search in Google Scholar

[18] D. N. Klyshko, Phys-Usp.+ 36, 1005 (1993) http://dx.doi.org/10.1070/PU1993v036n11ABEH00217810.1070/PU1993v036n11ABEH002178Search in Google Scholar

[19] O. H. Ozaktas, Z. Zalevsky, M. A. Kutay, The fractional Fourier transform: with applications in optics and signal processing (John Wiley & Sons, New York, 2001) 10.23919/ECC.2001.7076127Search in Google Scholar

[20] S. Pancharatnam, P. Indian Acad. Sci. A 44, 247 (1956) 10.1007/BF03046050Search in Google Scholar

[21] D. B. Percival, A. T. Walden, Spectral analysis for physical applications: multitaper and conventional univariate techniques (Cambridge University Press, Cambridge, 1993) http://dx.doi.org/10.1017/CBO978051162276210.1017/CBO9780511622762Search in Google Scholar

[22] B. Tacer, P. J. Loughlin, IEEE international conference on acoustics, speech, and signal processing, May 9–12, 1995, Detroit, USA (IEEE, New York, 1995) 1013 http://dx.doi.org/10.1109/ICASSP.1995.48040510.1109/ICASSP.1995.480405Search in Google Scholar

[23] W. J. Thompson Comput. Sci. Eng. 1, 84 (1999) 10.1109/5992.764220Search in Google Scholar

[24] D. J. Thomson, In: W. J. Fitzgerald R. L. Smith, A. T. Walden, P. C. Young, (Eds.), Nonlinear and nonstationary signal processing (Cambridge University Press, Cambridge, 2000) 317 Search in Google Scholar

[25] D. J. Thomson, Proceedings of the IEEE 70, 1055 (1982) http://dx.doi.org/10.1109/PROC.1982.1243310.1109/PROC.1982.12433Search in Google Scholar

[26] J. Xiao, P. Flandrin, IEEE T. Signal Proces. 55, 2851 (2007) http://dx.doi.org/10.1109/TSP.2007.89396110.1109/TSP.2007.893961Search in Google Scholar

[27] W. M. Zhang, arXiv:hep-th/9908117v1 Search in Google Scholar

Published Online: 2011-12-3
Published in Print: 2012-2-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow