Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 3, 2011

An adjustable law of motion for relativistic spherical shells

Lorenzo Zaninetti
From the journal Open Physics

Abstract

A classical and a relativistic law of motion for an advancing shell are deduced applying the thin layer approximation. A new parameter connected with the quantity of absorbed matter in the expansion is introduced; this allows the matching of theory with observation.

[1] G. Taylor, P Roy. Soc A-Math. Phy 201, 159 (1950) http://dx.doi.org/10.1098/rspa.1950.004910.1098/rspa.1950.0049Search in Google Scholar

[2] G. Taylor, P Roy. Soc A-Math. Phy 201, 175 (1950) http://dx.doi.org/10.1098/rspa.1950.005010.1098/rspa.1950.0050Search in Google Scholar

[3] L. I. Sedov, Similarity and dimensional methods in mechanics (Academic Press, New York, 1959) Search in Google Scholar

[4] A. McCray, In: R. Dalgarno and D. Layzer (Eds.), Spectroscopy of astrophysical plasmas (Cambridge University Press, Cambridge, 1987) 10.1017/CBO9780511564659Search in Google Scholar

[5] R. A. Chevalier, Astrophys. J. 258, 790 (1982) http://dx.doi.org/10.1086/16012610.1086/160126Search in Google Scholar

[6] R. A. Chevalier, Astrophys. J. 259, 302 (1982) http://dx.doi.org/10.1086/16016710.1086/160167Search in Google Scholar

[7] J. K. Truelove, C. F. McKee, Astrophys. J. Suppl. S. 120, 299 (1999) http://dx.doi.org/10.1086/31317610.1086/313176Search in Google Scholar

[8] C. D. Vigh et al., Astrophys. J. 727, 32 (2011) http://dx.doi.org/10.1088/0004-637X/727/1/3210.1088/0004-637X/727/1/32Search in Google Scholar

[9] M. E. Gaspar, I. Racz, Classical Quant. Grav. 28, 085005 (2011) http://dx.doi.org/10.1088/0264-9381/28/8/08500510.1088/0264-9381/28/8/085005Search in Google Scholar

[10] J. Kijowski, G. Magli, D. Malafarina, Int. J. Mod. Phys. D 18, 1801 (2009) http://dx.doi.org/10.1142/S021827180901499610.1142/S0218271809014996Search in Google Scholar

[11] J. M. Marcaide, I. Marti-Vidal, A. Alberdi, M. A. Perez-Torres, Astron. Astrophys. 505, 927 (2009) http://dx.doi.org/10.1051/0004-6361/20091213310.1051/0004-6361/200912133Search in Google Scholar

[12] J. E. Dyson, D. A. Williams, The physics of the interstellar medium (Institute of Physics Publishing, Bristol, 1997) http://dx.doi.org/10.1887/075030460X10.1887/075030460XSearch in Google Scholar

[13] P. Padmanabhan, Theoretical astrophysics. Vol. II: Stars and stellar systems (Cambridge University Press, Cambridge, 2001) Search in Google Scholar

[14] L. Zaninetti, Mon. Not. R. Astron. Soc. 395, 667 (2009) http://dx.doi.org/10.1111/j.1365-2966.2009.14551.x10.1111/j.1365-2966.2009.14551.xSearch in Google Scholar

[15] L. Zaninetti, Astrophys. Space Sci. 333, 99 (2011) http://dx.doi.org/10.1007/s10509-011-0609-x10.1007/s10509-011-0609-xSearch in Google Scholar

[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical recipes in FORTRAN. The art of scientific computing (Cambridge University Press, Cambridge, 1992) Search in Google Scholar

[17] A. P. French, Special relativity (CRC, New York, 1968) Search in Google Scholar

[18] L. Zaninetti, Adv. Stud. Theor. Phys. 4, 525 (2010) Search in Google Scholar

[19] L. Gou, D. B. Fox, P. Meszaros, Astrophys. J. 668, 1083 (2007) http://dx.doi.org/10.1086/52069910.1086/520699Search in Google Scholar

Published Online: 2011-12-3
Published in Print: 2012-2-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow