Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 31, 2012

Meson correlation function and screening mass in thermal QCD

Piotr Czerski EMAIL logo
From the journal Open Physics

Abstract

Analytical results for the spatial dependence of the correlation functions for all meson excitations in perturbative Quantum Chromodynamics, the lowest order, are calculated. The meson screening mass is obtained as a large distance limit of the correlation function. Our analysis leads to a better understanding of the excitations of Quark Gluon Plasma at sufficiently large temperatures and may be of relevance for future numerical calculations with fully interacting Quantum Chromodynamics.

[1] W. Florkowski, B. L. Friman, Z. Phys. A-Hadron. Nucl. 347, 271 (1994) http://dx.doi.org/10.1007/BF0128979410.1007/BF01289794Search in Google Scholar

[2] C. Itzykson, J. R. Zuber, Quantum field theory (McGraw-Hill, New York, 1980) Search in Google Scholar

[3] V. L. Eletskii, B. L. Ioffe, Sov. J. Nucl. Phys.+ 48, 384 (1988) Search in Google Scholar

[4] E. V. Shuryak, Rev. Mod. Phys. 65, 1 (1993) http://dx.doi.org/10.1103/RevModPhys.65.110.1103/RevModPhys.65.1Search in Google Scholar

[5] M. Laine, M. Vepsalainen, J. High Energy Phys. 0909, 023 (2009) http://dx.doi.org/10.1088/1126-6708/2009/09/02310.1088/1126-6708/2009/09/023Search in Google Scholar

[6] M. Vepsalainen, J. High Energy Phys. 0703, 022 (2007) http://dx.doi.org/10.1088/1126-6708/2007/03/02210.1088/1126-6708/2007/03/022Search in Google Scholar

[7] M. Laine, M. Vepsalainen, J. High Energy Phys. 0402, 004 (2004) http://dx.doi.org/10.1088/1126-6708/2004/02/00410.1088/1126-6708/2004/02/004Search in Google Scholar

[8] W. M. Alberico, A. Beraudo, A. Czerska, P. Czerski, A. Molinari, Nucl. Phys. A 792, 152 (2007) http://dx.doi.org/10.1016/j.nuclphysa.2007.04.01910.1016/j.nuclphysa.2007.04.019Search in Google Scholar

[9] C. DeTar, J. Kogut, Phys. Rev. Lett. 59, 399 (1987) http://dx.doi.org/10.1103/PhysRevLett.59.39910.1103/PhysRevLett.59.399Search in Google Scholar PubMed

[10] C. DeTar, J. Kogut, Phys. Rev. D 36, 2828 (1987) http://dx.doi.org/10.1103/PhysRevD.36.282810.1103/PhysRevD.36.2828Search in Google Scholar PubMed

[11] S. Gottlieb et al., Phys. Rev. Lett. 59, 1881 (1987) http://dx.doi.org/10.1103/PhysRevLett.59.188110.1103/PhysRevLett.59.1881Search in Google Scholar PubMed

[12] K. D. Born et al., Phys. Rev. Lett. 67, 302 (1991) http://dx.doi.org/10.1103/PhysRevLett.67.30210.1103/PhysRevLett.67.302Search in Google Scholar PubMed

[13] P. de Forcrand et al., Phys. Rev. D 63, 054501 (2001) http://dx.doi.org/10.1103/PhysRevD.63.05450110.1103/PhysRevD.63.054501Search in Google Scholar

[14] I. Pushkina et al., Phys. Lett. B 609, 265 (2005) http://dx.doi.org/10.1016/j.physletb.2005.01.00610.1016/j.physletb.2005.01.006Search in Google Scholar

[15] S. Wissel et al., Proceedings of Science LAT2005, 164 (2006) Search in Google Scholar

[16] R. Gavai, S. Gupta, Phys. Rev. D 67, 034501 (2003) http://dx.doi.org/10.1103/PhysRevD.67.03450110.1103/PhysRevD.67.034501Search in Google Scholar

[17] R. Gavai, S. Gupta, R. Lacaze, Proceedings of Science LAT2006, 135 (2006) Search in Google Scholar

[18] R. Gavai, S. Gupta, R. Lacaze, Phys. Rev. D 78, 014502 (2008) http://dx.doi.org/10.1103/PhysRevD.78.01450210.1103/PhysRevD.78.014502Search in Google Scholar

[19] S. Mukherjee, Proceedings of Science LAT2007, 210 (2007) Search in Google Scholar

[20] S. Mukherjee, Nucl. Phys. A 820, 283C (2009) http://dx.doi.org/10.1016/j.nuclphysa.2009.01.07010.1016/j.nuclphysa.2009.01.070Search in Google Scholar

[21] R. Falcone, R. Fiore, M. Gravina, A. Papa, Proceedings of Science LAT 2007, 183 (2007) Search in Google Scholar

[22] R. Falcone, R. Fiore, M. Gravina, A. Papa, Nucl. Phys. B 785, 19 (2007) http://dx.doi.org/10.1016/j.nuclphysb.2007.06.00910.1016/j.nuclphysb.2007.06.009Search in Google Scholar

[23] M. Cheng et al., Eur. Phys. J. C 71, 1564 (2011) http://dx.doi.org/10.1140/epjc/s10052-011-1564-y10.1140/epjc/s10052-011-1564-ySearch in Google Scholar

[24] J. Kapusta, Finate temperature field theory (Cambridge University Press, Cambridge, 1989) Search in Google Scholar

[25] L. C. Andrews, Special functions for engineers and applied mathematicians (MacMillan, New York, 1985) Search in Google Scholar

Published Online: 2012-3-31
Published in Print: 2012-4-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.1.2023 from https://www.degruyter.com/document/doi/10.2478/s11534-011-0117-1/html
Scroll Up Arrow