Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 31, 2012

Application of Jacobi’s last multiplier for construction of Hamiltonians of certain biological systems

A. Ghose Choudhury and Partha Guha
From the journal Open Physics

Abstract

The relationship between Jacobi’s last multiplier and the Lagrangian of a second-order ordinary differential equation is quite well known. In this article we demonstrate the significance of the last multiplier in Hamiltonian theory by explicitly constructing the Hamiltonians of certain well known first-order systems of differential equations arising in biology.

[1] V.I. Arnold, Ordinary Differential Equations (Springer-Verlag, Berlin, 2006) Search in Google Scholar

[2] G. F. Torres del Castillo, J. Phys. A Math. Theor. 43, 265202 (2009) http://dx.doi.org/10.1088/1751-8113/42/26/26520210.1088/1751-8113/42/26/265202Search in Google Scholar

[3] A. Ghose Choudhury, P. Guha, B. Khanra, J. Math. Anal. Appl. 360, 651 (2009) http://dx.doi.org/10.1016/j.jmaa.2009.06.05210.1016/j.jmaa.2009.06.052Search in Google Scholar

[4] A. Goriely, Integrability and nonintegrability of dynamical systems. Advanced Series in Nonlinear Dynamics, xviii+415 (World Scientific Publishing Co., Inc., River Edge, NJ, 2001) http://dx.doi.org/10.1142/978981281194310.1142/3846Search in Google Scholar

[5] P. Guha and A. Ghose Choudhury, Acta Appl. Math 116, 179 (2011) http://dx.doi.org/10.1007/s10440-011-9637-310.1007/s10440-011-9637-3Search in Google Scholar

[6] C. G. J. Jacobi, Giornale Arcadico di Scienze, Lettere ed Arti 99, 129 (1844) Search in Google Scholar

[7] C. G. J. Jacobi, J. Reine Angew. Math 27, 199 (1844) http://dx.doi.org/10.1515/crll.1844.27.19910.1515/crll.1844.27.199Search in Google Scholar

[8] C. G. J. Jacobi, J. Reine Angew. Math 29, 213 (1845) http://dx.doi.org/10.1515/crll.1845.29.21310.1515/crll.1845.29.213Search in Google Scholar

[9] C. G. J. Jacobi, Astrophys. J. 342, 635 (1989) http://dx.doi.org/10.1086/16762310.1086/167623Search in Google Scholar

[10] C. A. Lucey, E. T. Newman, J. Math. Phys. 29, 2430 (1998) http://dx.doi.org/10.1063/1.52812910.1063/1.528129Search in Google Scholar

[11] M. C. Nucci, P. G. L. Leach, arXiv:0709.3231v1 Search in Google Scholar

[12] M. C. Nucci, J. Nonlinear Math. Phys. 12, 284 (2005) http://dx.doi.org/10.2991/jnmp.2005.12.2.910.2991/jnmp.2005.12.2.9Search in Google Scholar

[13] M. C. Nucci, K. M. Tamizhmani, arXiv:1108.2301v1 Search in Google Scholar

[14] G.H. Paine, Bull. Math. Biol. 44, 749 (1982) 10.1016/S0092-8240(82)80040-2Search in Google Scholar

[15] G. Sardanashvily, J. Math. Phys. 39, 2714 (1998) http://dx.doi.org/10.1063/1.53241610.1063/1.532416Search in Google Scholar

[16] A. Sarkar, J. K. Bhattacharjee, S. Chakraborty, D. B. Banerjee, Eur. Phys. J. D, DOI 10.1140/epjd/e2011-20060-1 Search in Google Scholar

[17] J. Struckmeier, J. Phys. A 38, 1257 (2005) http://dx.doi.org/10.1088/0305-4470/38/6/00610.1088/0305-4470/38/6/006Search in Google Scholar

[18] S. L. Trubatch, A. Franco, J. Theor. Biol. 48, 299 (1974) http://dx.doi.org/10.1016/S0022-5193(74)80003-210.1016/S0022-5193(74)80003-2Search in Google Scholar

[19] B. S. Madhava Rao, Proceedings of the Benares Mathematical Society (New Series) 2, 53 (1940) Search in Google Scholar

[20] E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (Cambridge University Press, Cambridge, 1988) 10.1017/CBO9780511608797Search in Google Scholar

Published Online: 2012-3-31
Published in Print: 2012-4-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow