Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 17, 2012

Self-assembly mechanism in colloids: perspectives from statistical physics

Achille Giacometti EMAIL logo
From the journal Open Physics


Motivated by recent experimental findings in chemical synthesis of colloidal particles, we draw an analogy between self-assembly processes occurring in biological systems (e.g. protein folding) and a new exciting possibility in the field of material science. We consider a self-assembly process whose elementary building blocks are decorated patchy colloids of various types, that spontaneously drive the system toward a unique and predetermined targeted macroscopic structure. To this aim, we discuss a simple theoretical model — the Kern-Frenkel model — describing a fluid of colloidal spherical particles with a pre-defined number and distribution of solvophobic and solvophilic regions on their surface. The solvophobic and solvophilic regions are described via a short-range square-well and a hard-sphere potentials, respectively. Integral equation and perturbation theories are presented to discuss structural and thermodynamical properties, with particular emphasis on the computation of the fluid-fluid (or gas-liquid) transition in the temperaturedensity plane. The model allows the description of both one and two attractive caps, as a function of the fraction of covered attractive surface, thus interpolating between a square-well and a hard-sphere fluid, upon changing the coverage. By comparison with Monte Carlo simulations, we assess the pros and the cons of both integral equation and perturbation theories in the present context of patchy colloids, where the computational effort for numerical simulations is rather demanding.

[1] G. M. Whitesides, M. Boncheva, Proc. Natl. Acad. Sci. 99, 4769 (2002) in Google Scholar

[2] G. M. Whitesides, B. Grzybowski, Science 295, 2418 (2002) in Google Scholar

[3] N.W. Ashcroft, N. D. Mermin, Solid State Physics (Thomson Learning 1976) Search in Google Scholar

[4] J. Lyklema, Fundamentals of Interface and Colloid Science, Vol. I: Fundamentals (Academic, London, 1991) 10.1016/0021-9797(91)90360-KSearch in Google Scholar

[5] A. V. Finkelstein, O. B. Ptitsyn, Protein Physics (Academic Press 2002) Search in Google Scholar

[6] S. C. Glotzer, Science 306, 419 (2004) in Google Scholar PubMed

[7] S. C. Glotzer, M. J. Solomon, Nature Mater. 6, 557 (2007) in Google Scholar PubMed

[8] A. Walther, A. H. E. Müller, Soft Matter 4, 663 (2008) in Google Scholar PubMed

[9] A. B. Pawar, I. Kretzchmar, Macromol. Rapid Commun 31, 150 (2010) in Google Scholar PubMed

[10] A. J. Williamson, A. W. Wilber, J. P. K. Doyle, A. A. Louis, Soft Matter 7, 3423 (2011) in Google Scholar

[11] L. Hong, A. Cacciuto, E. Luijten, S. Granick, Langmuir 24, 621 (2008) in Google Scholar PubMed

[12] Q. Chen, S. C. Bae, S. Granick, Nature 469, 382 (2011) 10.1038/nature09713Search in Google Scholar PubMed

[13] F. Romano, F. Sciortino, Nature Materials 10, 171 (2011) in Google Scholar

[14] F. Romano, F. Sciortino, Soft Matter 7, 5799 (2011) in Google Scholar

[15] N. Kern, D. Frenkel, J. Chem. Phys. 118, 9882 (2003) in Google Scholar

[16] A. Giacometti, G. Pastore, F. Lado, Mol. Phys. 107, 555 (2009) in Google Scholar

[17] A. Giacometti, F. Lado, J. Largo, G. Pastore, F. Sciortino, J. Chem. Phys. 131, 174114 (2009) in Google Scholar

[18] A. Giacometti, F. Lado, J. Largo, G. Pastore, F. Sciortino, J. Chem. Phys. 132, 174110 (2010) in Google Scholar

[19] F. Lado, Phys. Lett. 89A, 196 (1982) 10.1016/0375-9601(82)90207-9Search in Google Scholar

[20] F. Lado, Mol. Phys. 7, 283 (1982) in Google Scholar

[21] F. Lado, Mol. Phys. 47, 299 (1982) in Google Scholar

[22] F. Lado, E. Lomba, M. Lombardero, J. Chem. Phys. 103, 481 (1995) in Google Scholar

[23] R. Zwanzig, J. Chem. Phys. 22, 1420 (1954) in Google Scholar

[24] J.A. Barker, D. Henderson, J. Chem. Phys. 47, 2856 (1967) in Google Scholar

[25] C. Gögelein et al., J. Chem. Phys. 129, 085102 (2008) in Google Scholar

[26] C. Gögelein, F. Romano, F. Sciortino, A. Giacometti, J. Chem. Phys. in press (2012) Search in Google Scholar

[27] M. Doi and S.F. Edwards, Theory of Polymer Dynamics (Oxford Univ. Press 1986) Search in Google Scholar

[28] H. Löwen, Phys. Rep. 237, 249 (1994) in Google Scholar

[29] A.P. Henninen, J.H.J. Thijssen, E.C.M. Vermolen, M. Dijskra, A. Van Blaaderen, Nat. Mater. 3, 593 (2007) in Google Scholar PubMed

[30] J. P. Hansen, I. R. McDonald, Theory of Simple Liquids (Academic, New Yor Search in Google Scholar

[31] S. Labík, A. Malijevský, P. Voňka, Mol. Phys. 56, 709 (1985) in Google Scholar

[32] C. G. Gray, K. E. Gubbins, Theory of Molecular Fluids, Vol. 1: Fundamentals (Clarendon, Oxford, 1984) 10.1093/oso/9780198556022.001.0001Search in Google Scholar

[33] L. Vega, E. de Miguel, L. F. Rull, G. Jackson, I. A. McLure, J. Chem. Phys. 96, 2296 (1992) in Google Scholar

[34] H. Liu, S. Garde, and S. Kumar, J. Chem. Phys. 123, 174505 (2005) in Google Scholar PubMed

[35] F. Sciortino, A. Giacometti, G. Pastore, Phys. Rev. Lett. 103, 237801 (2009) in Google Scholar PubMed

[36] F. Sciortino, A. Giacometti, G. Pastore, Phys. Chem. Chem. Phys. 12, 11869 (2010) in Google Scholar PubMed

[37] D. Henderson, J.A. Parker, Physical Chemistry, an advanced treatise Vol. VIIIA, (1971) Search in Google Scholar

[38] J.A. Barker, D. Henderson, Rev. Mod. Phys. 48, 587 (1976) in Google Scholar

[39] D. Henderson, O. H. Scalise, W. S. Smith, J. Chem. Phys. 72, 2431 (1980) in Google Scholar

[40] C.N. Likos, Zs T. Nèmeth, H. Löwen, J. Phys: Condens. Matter 6, 10965 (1994) in Google Scholar

[41] J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971) in Google Scholar

[42] H. C. Andersen, D. Chandler, J.D. Weeks, Adv. Chem. Phys. 34, 105 (1976) in Google Scholar

[43] D. Chandler, J.D. Weeks, H.C. Andersen, Science 220, 787 (1983) in Google Scholar PubMed

[44] D. Chandler H.C. Anderson, J. Chem. Phys. 57, 1930 (1972) in Google Scholar

[45] E. Bianchi, R. Blaak, C. N. Likos, Phys. Chem. Chem. Phys. 13, 6397 (2011) in Google Scholar PubMed

[46] R. Fantoni, A. Giacometti, F. Sciortino, G. Pastore, Soft Matter 7, 2419 (2011) in Google Scholar

[47] A. Reinhardt et al., J. Chem. Phys. 134, 104905 (2011) in Google Scholar PubMed

[48] J.M. Tavares, P. I. C. Teixeira, M. M. Telo de Gama, F. Sciortino, J. Chem. Phys. 132, 234502 (2010) in Google Scholar PubMed

[49] E. Bianchi, J. Largo, P. Tartaglia, E. Zaccarelli, F. Sciortino, Phys. Rev. Lett. 97, 168301 (2006) in Google Scholar PubMed

Published Online: 2012-6-17
Published in Print: 2012-6-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 10.12.2022 from
Scroll Up Arrow