Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 17, 2012

Photoluminescence of gamma-, proton- and alpha-irradiated LiF detectors

Barbara Marczewska, Paweł Bilski, Ewa Mandowska and Arkadiusz Mandowski
From the journal Open Physics

Abstract

Lithium fluoride (LiF), one of the most pervasive alkali halides in optical device research, is routinely used in optical data storage and radiation protection. LiF crystals may contain different aggregate defects produced by several types of ionizing radiation, with the number of defects being proportional to the cumulative radiation dose. Stimulation of irradiated LiF detectors by heating or with blue light causes thermoluminescence (TL) or photoluminescence (PL), respectively. We developed a new PL reader equipped with a blue light-emitting diode for stimulation and a Hamamatsu photomultiplier for registering green emissions, dedicated to examining LiF detectors as well as more broadly investigating TL/PL emission from standard LiF detectors irradiated with gamma rays, 60 MeV protons and alpha particles. The results confirmed very high efficiency PL signal from alpha-irradiated LiF detectors corresponding to their low efficiency after gamma irradiation, and vice versa for TL readout. Combining the TL and PL readouts permits us to discriminate between how different kinds of radiation affect efficiency in LiF detectors.

[1] G. Baldacchini, J. Lumin. 100, 333 (2002) http://dx.doi.org/10.1016/S0022-2313(02)00460-X10.1016/S0022-2313(02)00460-XSearch in Google Scholar

[2] R. M. Montereali, J. Lumin. 72–74, 4 (1997) http://dx.doi.org/10.1016/S0022-2313(96)00329-810.1016/S0022-2313(96)00329-8Search in Google Scholar

[3] G. Baldacchini et al., J. Lumin. 94–95, 299 (2001) http://dx.doi.org/10.1016/S0022-2313(01)00309-X10.1016/S0022-2313(01)00309-XSearch in Google Scholar

[4] G. Baldacchini et al., Nucl. Instrum. Meth. B 191, 216 (2002) http://dx.doi.org/10.1016/S0168-583X(02)00562-110.1016/S0168-583X(02)00562-1Search in Google Scholar

[5] G. Baldacchini et al., Optical Materials 16, 53 (2001) http://dx.doi.org/10.1016/S0925-3467(00)00059-810.1016/S0925-3467(00)00059-8Search in Google Scholar

[6] J. Nahum et al., Phys. Rev. 154,3, 817 (1967) http://dx.doi.org/10.1103/PhysRev.154.81710.1103/PhysRev.154.817Search in Google Scholar

[7] F. Bonfigli et al., J. Lumin. 129, 1964 (2009) http://dx.doi.org/10.1016/j.jlumin.2009.04.03510.1016/j.jlumin.2009.04.035Search in Google Scholar

[8] G. Baldacchini et al. J. Lumin. 122–123, 371 (2007) http://dx.doi.org/10.1016/j.jlumin.2006.01.19310.1016/j.jlumin.2006.01.193Search in Google Scholar

[9] M. Murphy et al., Rad. Phys. Chem. 68, 981 (2003) http://dx.doi.org/10.1016/S0969-806X(03)00441-910.1016/S0969-806X(03)00441-9Search in Google Scholar

[10] L. Oster et al., Radiat. Prot. Dosim. 128, 261 (2008) http://dx.doi.org/10.1093/rpd/ncm36810.1093/rpd/ncm368Search in Google Scholar PubMed

[11] L. Oster et al., Radiat. Meas. 45, 1130 (2010) http://dx.doi.org/10.1016/j.radmeas.2010.06.01710.1016/j.radmeas.2010.06.017Search in Google Scholar

[12] P. Bilski, Radiat. Prot. Dosim. 100, 199 (2002) http://dx.doi.org/10.1093/oxfordjournals.rpd.a00584710.1093/oxfordjournals.rpd.a005847Search in Google Scholar PubMed

[13] A. Mandowski et al., Elektronika 51, 136 (2010) (in Polish) Search in Google Scholar

Published Online: 2012-7-17
Published in Print: 2012-8-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow