Abstract
We prove that the stress tensor conservation equation expressing the local equilibrium condition of a body results from the invariance of its partition function under canonical point transformations. From this result the expression of the stress tensor of a general atomistic system (with short range interactions) in terms of its microscopic degrees of freedom can be obtained. The derivation, which can be extended to encompass the quantum mechanical case, works in the canonical as well as the micro-canonical ensemble and is valid for systems endowed with arbitrary boundary conditions. As an interesting by-product of our general approach, we are able to positively answer the old question concerning the uniqueness of the stress tensor expression.
[1] J. H. Irving, J. G. Kirkwood, J. Chem. Phys. 18, 817 (1950) http://dx.doi.org/10.1063/1.174778210.1063/1.1747782Search in Google Scholar
[2] D. H. Tsai, J. Chem. Phys. 70, 1375 (1979) http://dx.doi.org/10.1063/1.43757710.1063/1.437577Search in Google Scholar
[3] J. J. Erpenbeck, W. W. Wood, In: Modern Theoretical Chemistry, Ed. B. J. Berne, Vol. 6, Part B, p. 1 (Plenum Press, New York, 1977) Search in Google Scholar
[4] J. J. Erpenbeck, Phys. Rev. E 51, 4296 (1995) http://dx.doi.org/10.1103/PhysRevE.51.429610.1103/PhysRevE.51.4296Search in Google Scholar
[5] R. G. Winkler, H. Morawitz, D. Y. Yoon, Mol. Phys. 75, 669 (1992) http://dx.doi.org/10.1080/0026897920010049110.1080/00268979200100491Search in Google Scholar
[6] L. Mistura, Int. J. Thermophys. 8, 397 (1987) http://dx.doi.org/10.1007/BF0050395110.1007/BF00503951Search in Google Scholar
[7] L. Mistura, J. Chem. Phys. 83, 3635 (1985) http://dx.doi.org/10.1063/1.44917010.1063/1.449170Search in Google Scholar
[8] O. H. Nielsen, R. M. Martin, Phys. Rev. Lett. 50, 697 (1983) http://dx.doi.org/10.1103/PhysRevLett.50.69710.1103/PhysRevLett.50.697Search in Google Scholar
[9] O. H. Nielsen, R. M. Martin, Phys. Rev. B 32, 3780 (1985) http://dx.doi.org/10.1103/PhysRevB.32.378010.1103/PhysRevB.32.3780Search in Google Scholar PubMed
[10] R. J. Needs, Phys. Rev. Lett. 58, 53 (1987) http://dx.doi.org/10.1103/PhysRevLett.58.5310.1103/PhysRevLett.58.53Search in Google Scholar PubMed
[11] P. Ziesche, J. Gräfenstein, O. H. Nielsen, Phys. Rev. B 37, 8167 (1988) http://dx.doi.org/10.1103/PhysRevB.37.816710.1103/PhysRevB.37.8167Search in Google Scholar
[12] J. Gräfenstein, P. Ziesche, Phys. Rev. B 53, 7143 (1996) http://dx.doi.org/10.1103/PhysRevB.53.714310.1103/PhysRevB.53.7143Search in Google Scholar PubMed
[13] A. Martin Pendás, J. Chem. Phys. 117, 965 (2002) http://dx.doi.org/10.1063/1.148438510.1063/1.1484385Search in Google Scholar
[14] N. O. Folland, Phys. Rev. B 34, 8296 (1986) http://dx.doi.org/10.1103/PhysRevB.34.829610.1103/PhysRevB.34.8296Search in Google Scholar PubMed
[15] O. H. Nielsen, R. M. Martin, Phys. Rev. B 37, 10905 (1988) http://dx.doi.org/10.1103/PhysRevB.37.1090510.1103/PhysRevB.37.10905Search in Google Scholar
[16] L. Landau, E. Lifchitz, Théorie de lélasticité, Vol. VII (Eds. MIR, Moscou, 1984) Search in Google Scholar
[17] S. Morante, G. C. Rossi, M. Testa, J. Chem. Phys. 125, 034101 (2006) http://dx.doi.org/10.1063/1.221471910.1063/1.2214719Search in Google Scholar PubMed
[18] G. C. Rossi, M. Testa, J. Chem. Phys. 132, 1 (2010) http://dx.doi.org/10.1063/1.331613410.1063/1.3316134Search in Google Scholar PubMed
[19] L. Landau, E. Lifchitz, Mécanique, Vol. I (Eds. MIR, Moscou, 1984) Search in Google Scholar
© 2012 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.