Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 17, 2012

Prior probabilities and thermal characteristics of heat engines

Preety Aneja and Ramandeep Johal
From the journal Open Physics


The thermal characteristics of a heat cycle are studied from a Bayesian approach. In this approach, we assign a certain prior probability distribution to an uncertain parameter of the system. Based on that prior, we study the expected behaviour of the system and it has been found that even in the absence of complete information, we obtain thermodynamic-like behaviour of the system. Two models of heat cycles, the quantum Otto cycle and the classical Otto cycle are studied from this perspective. Various expressions for thermal efficiences can be obtained with a generalised prior of the form Π(x) ∝ 1/x b. The predicted thermodynamic behaviour suggests a connection between prior information about the system and thermodynamic features of the system.

[1] H. S. Leff, A. F. Rex, Maxwell’s Demon: Entropy, Information, Computing (Princeton University Press, Princeton, NJ, 1990) 10.1515/9781400861521Search in Google Scholar

[2] H. S. Leff, A. F. Rex, Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing (Institute of Physics, Bristol, 2003) 10.1201/9781420033991Search in Google Scholar

[3] V. Dose, Rep. Prog. Phys. 66, 1421 (2003) in Google Scholar

[4] C. P. Robert, The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation (Springer, 2007) Search in Google Scholar

[5] E. T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, Cambridge, 2003) in Google Scholar

[6] H. Jeffreys, Theory of Probability (Clarendon Press, Oxford, 1939) Search in Google Scholar

[7] R. E. Kass, Larry Wasserman, J. Am. Stat. Assoc. 91, 435 (1996) in Google Scholar

[8] F. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975) in Google Scholar

[9] H. S. Leff, Am. J. Phys. 55, 701 (1987) in Google Scholar

[10] M. J. Ondrechen, B. Andresen, M. Mozurkewich, R. S. Berry, Am. J. Phys. 49, 681 (1981) in Google Scholar

[11] P. T. Landsberg, H. S. Leff, J. Phys. A: Math. Gen. 22, 4019 (1989) in Google Scholar

[12] C. Van den Broeck, Phys. Rev. Lett. 95, 190602 (2005) in Google Scholar PubMed

[13] M. Esposito, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 102, 130602 (2009) in Google Scholar PubMed

[14] R. S. Johal, Phys. Rev. E 82, 061113 (2010) in Google Scholar PubMed

[15] T. D. Kieu, Phys. Rev. Lett. 93, 140403 (2004) in Google Scholar PubMed

[16] H. Jeffreys, Scientific Inference (Cambridge University Press, Cambridge, 1957) 10.2307/2332897Search in Google Scholar

[17] G. Thomas, R.S. Johal, Phys. Rev. E (in press) (2012) Search in Google Scholar

[18] E. T. Jaynes, IEEE Trans. Sys. Sc. Cyber., 4, 227 (1968) in Google Scholar

[19] R. S. Johal, Phys. Rev. E 80, 041119 (2009) in Google Scholar PubMed

[20] H. S. Leff, Am. J. Phys. 55, 602 (1987) in Google Scholar

[21] H. B. Callen, Thermodynamics and An Introduction to Thermostatistics (Wiley, New York) Search in Google Scholar

[22] M. Esposito et. al., Phys. Rev. Lett. 105, 150603 (2010) in Google Scholar PubMed

[23] A. E. Allahverdyan, R. S. Johal, G. Mahler, Phys. Rev. E 77, 041118 (2008) in Google Scholar PubMed

Published Online: 2012-6-17
Published in Print: 2012-6-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow