Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 17, 2012

Cholesteric pitch-transitions induced by a magnetic field in a sample containing incomplete number of pitches

Ioannis Lelidis, Giovanni Barbero and Antonio Scarfone
From the journal Open Physics

Abstract

We investigate the pitch transitions induced by an external bulk field in a Cholesteric Liquid Crystal slab of finite thickness ℓ that contains an incomplete number of π-twists. The analysis is performed for a magnetic field that is (i) perpendicular to the helical axis, and (ii) tilted with respect to one of the easy directions imposed by planar and rigid boundary conditions. For finite ℓ we obtain a cascade of transitions, where the bulk expels a half-pitch at a time with increasing field to avoid divergences in the elastic energy. The dependence of the threshold magnetic field inducing the expulsion on the easy axes twist angle δ is investigated for all the cascade of pitch transitions and in particular for the final one, corresponding to the Cholesteric-Nematic transition. In the ℓ → ∞ limit this dependence disappears and we reobtain the results of de Gennes for an infinite sample.

[1] V. Fredericks, V. Zolina, Trans. Faraday Soc. 29, 919 (1933) http://dx.doi.org/10.1039/tf933290091910.1039/TF9332900919Search in Google Scholar

[2] W. Helfrich, Appl. Phys. Lett. 17, 531 (1970) http://dx.doi.org/10.1063/1.165329710.1063/1.1653297Search in Google Scholar

[3] J.P. Hurault, J. Chem. Phys. 59, 2068 (1973) http://dx.doi.org/10.1063/1.168029310.1063/1.1680293Search in Google Scholar

[4] I. Lelidis, M. Nobili, G. Durand, Phys. Rev. E 48, 3818 (1993) http://dx.doi.org/10.1103/PhysRevE.48.381810.1103/PhysRevE.48.3818Search in Google Scholar

[5] I. Lelidis, Phys. Rev. Lett. 86, 1267 (2001) http://dx.doi.org/10.1103/PhysRevLett.86.126710.1103/PhysRevLett.86.1267Search in Google Scholar

[6] P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993) Search in Google Scholar

[7] L.M. Blinov, Structure and Properties of Liquid Crystals (Springer, 2001) Search in Google Scholar

[8] M. Kleman, O.D. Lavrentovich, Soft Matter Physics: An Introduction (Springer, 2002) Search in Google Scholar

[9] P. Seng, Phys. Rev. Lett. 37, 1059 (1976) http://dx.doi.org/10.1103/PhysRevLett.37.105910.1103/PhysRevLett.37.1059Search in Google Scholar

[10] T.J. Sluckin, A. Poniewierski, In: Fluid Interfacial Phenomena, edited by C.A. Croxton, 215 (John Wiley, Chichester, 1986) Search in Google Scholar

[11] T.J. Sluckin, Physica A 213, 105 (1995) http://dx.doi.org/10.1016/0378-4371(94)00151-I10.1016/0378-4371(94)00151-ISearch in Google Scholar

[12] G. Barbero, L.R. Evangelista, An Elementary Course on the Continuum Theory for Nematic Liquid Crystals (World Scientific, 2001) 10.1142/3557Search in Google Scholar

[13] I. Lelidis, P. Galatola, Phys. Rev. E 66, 10701 (2002) http://dx.doi.org/10.1103/PhysRevE.66.01070110.1103/PhysRevE.66.010701Search in Google Scholar

[14] P.G. de Gennes, Solid State Commun. 6, 163 (1968) http://dx.doi.org/10.1016/0038-1098(68)90024-010.1016/0038-1098(68)90024-0Search in Google Scholar

[15] R.B. Meyer, Appl. Phys. Lett. 12, 281 (1968) http://dx.doi.org/10.1063/1.165199210.1063/1.1651992Search in Google Scholar

[16] G. Durand, L. Leger, I. Rondelez, M. Veyssie, Phys. Rev. Lett. 22, 227 (1969) http://dx.doi.org/10.1103/PhysRevLett.22.22710.1103/PhysRevLett.22.227Search in Google Scholar

[17] R.B. Meyer, Appl. Phys. Lett. 14, 208 (1969) http://dx.doi.org/10.1063/1.165278010.1063/1.1652780Search in Google Scholar

[18] R. Dreher, Solid State Commun. 13, 1571 (1973) http://dx.doi.org/10.1016/0038-1098(73)90239-110.1016/0038-1098(73)90239-1Search in Google Scholar

[19] P.J. Kedney, I.W. Stewart, Continuum. Mech. Thermodyn. 6, 141 (1994) http://dx.doi.org/10.1007/BF0114089510.1007/BF01140895Search in Google Scholar

[20] V.A. Belyakov, JETP Lett. 76, 88 (2002) http://dx.doi.org/10.1134/1.151006410.1134/1.1510064Search in Google Scholar

[21] S.V. Belyaev, L.M. Blinov, JETP Lett. 30, 99 (1979) Search in Google Scholar

[22] E. Niggemann, H. Stegemeyer, Liq. Cryst. 5, 739 (1989) http://dx.doi.org/10.1080/0267829890804542410.1080/02678298908045424Search in Google Scholar

[23] P. Oswald, J. Baudry, S. Pirkl, Phy. Rep. 337, 67 (2000) http://dx.doi.org/10.1016/S0370-1573(00)00056-910.1016/S0370-1573(00)00056-9Search in Google Scholar

[24] A.M. Scarfone, I. Lelidis, G. Barbero, Phys. Rev. E 84, 021708 (2011) http://dx.doi.org/10.1103/PhysRevE.84.02170810.1103/PhysRevE.84.021708Search in Google Scholar PubMed

[25] M. Abramowitz, I.A. Stegun, Handbook of mathematical function, (Dover pubblication, Inc. New York, 1970) Search in Google Scholar

Published Online: 2012-6-17
Published in Print: 2012-6-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow