Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 4, 2012

Probing the QCD critical point with relativistic heavy-ion collisions

  • Steffen Bass EMAIL logo , Hannah Petersen , Cory Quammen , Hal Canary , Christopher Healey and Russell Taylor
From the journal Open Physics

Abstract

We utilize an event-by-event relativistic hydrodynamic calculation performed at a number of different incident beam energies to investigate the creation of hot and dense QCD matter near the critical point. Using state-of-the-art analysis and visualization tools we demonstrate that each collision event probes QCD matter characterized by a wide range of temperatures and baryo-chemical potentials, making a dynamical response of the system to the vicinity of the critical point very difficult to isolate above the background.

[1] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, K. K. Szabo, Nature 443, 675 (2006) http://dx.doi.org/10.1038/nature0512010.1038/nature05120Search in Google Scholar

[2] A. Bazavov et al., Phys. Rev. D 80, 014504 (2009) http://dx.doi.org/10.1103/PhysRevD.80.01450410.1103/PhysRevD.80.014504Search in Google Scholar

[3] S. Borsanyi et al., J. High Energy Phys. 1011, 077 (2010) http://dx.doi.org/10.1007/JHEP11(2010)07710.1007/JHEP11(2010)077Search in Google Scholar

[4] P. Huovinen, P. Petreczky, Nucl. Phys. A 837, 26 (2010) http://dx.doi.org/10.1016/j.nuclphysa.2010.02.01510.1016/j.nuclphysa.2010.02.015Search in Google Scholar

[5] H. Song, S. A. Bass, U. Heinz, T. Hirano, C. Shen, Phys. Rev. Lett. 106, 192301 (2011) http://dx.doi.org/10.1103/PhysRevLett.106.19230110.1103/PhysRevLett.106.192301Search in Google Scholar

[6] M. A. Stephanov, K. Rajagopal, E. V. Shuryak, Phys. Rev. Lett. 81, 4816 (1998) http://dx.doi.org/10.1103/PhysRevLett.81.481610.1103/PhysRevLett.81.4816Search in Google Scholar

[7] Z. Fodor and S. D. Katz, J. High Energy Phys. 03, 014 (2002) http://dx.doi.org/10.1088/1126-6708/2002/03/01410.1088/1126-6708/2002/03/014Search in Google Scholar

[8] C. Athanasiou, K. Rajagopal, M. Stephanov, Phys. Rev. D 82, 074008 (2010) http://dx.doi.org/10.1103/PhysRevD.82.07400810.1103/PhysRevD.82.074008Search in Google Scholar

[9] H. Petersen et al., Phys. Rev. C 78, 044901 (2008) http://dx.doi.org/10.1103/PhysRevC.78.04490110.1103/PhysRevC.78.044901Search in Google Scholar

[10] S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 225 (1998) http://dx.doi.org/10.1016/S0146-6410(98)00058-110.1016/S0146-6410(98)00058-1Search in Google Scholar

[11] M. Bleicher et al., J. Phys. G 25, 1859 (1999) http://dx.doi.org/10.1088/0954-3899/25/9/30810.1088/0954-3899/25/9/308Search in Google Scholar

[12] J. Steinheimer et al., Phys. Rev. C 77, 034901 (2008) http://dx.doi.org/10.1103/PhysRevC.77.03490110.1103/PhysRevC.77.034901Search in Google Scholar

[13] A. Squillacote, The ParaView Guide, third ed. (Kitware, Inc., New York, 2008) Search in Google Scholar

Published Online: 2012-12-4
Published in Print: 2012-12-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 2.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11534-012-0076-1/html
Scroll to top button