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Abstract:

In this contribution, we discuss the nonrelativistic limit of the Dirac equation for a neutral particle with a

permanent electric dipole moment interacting with external fields in a noninertial frame. We show a case
where the geometry of the manifold can play the role of a hard-wall confining potential due to noninertial
effects, and can yield bound states analogous to a confinement of the spin-half neutral particle interacting
with external fields to a quantum dot described by a hard-wall confining potential [33].
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1. Introduction

Studies of noninertial effects in experiments of interfer-
ometry have discovered important quantum effects, for in-
stance, the Sagnac effect [1, 2] and the Mashhoon ef-
fect [3]. These quantum effects have opened interesting
discussions about the influence of the noninertial effects
in nonrelativistic quantum systems [4-12]. New studies
of noninertial effects have been made in the relativistic
regime [13, 14], and in the presence of a weak gravitational
field [15]. In recent years, the study of noninertial effects
have been extended to the quantum dynamics of neutral
particles with permanent magnetic and electric dipole mo-
ments. For instance, by considering a rotating frame, the
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analogue of the Aharonov-Casher effect has been studied
in [16]. By considering a Fermi-Walker reference frame,
the Anandan quantum phase for a neutral particle with
permanent magnetic dipole moment has been discussed
in [17]. Non-inertial effects of the Fermi-Walker reference
frame have also been studied in the context of holonomies
in curved spacetime background [18].
Einstein-Podolsky-Rosen correlations have been studied
via the Fermi-Walker transport in the cosmic string space-

The relativistic

time background [19].

The influence of noninertial effects has also been stud-
ied in bound states, where an interesting coupling be-
tween the angular momentum and the angular velocity of
the rotating frame has been observed. This coupling is
called the Page-Werner et al. coupling [11-13]. More
studies of noninertial effects have been done in analogous
systems of the Landau quantization [20]. In Ref. [21], it
has been shown that the Landau-Aharonov-Casher quan-
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tization [22, 23] can be achieved in a rotating frame. In
Ref. [24-26], it has been shown that the Landau-He-
McKellar-Wilkens quantization [27-29] can be obtained
without assuming the existence of magnetic charges. Re-
cently, bound states for a neutral particle with permanent
magnetic dipole moment analogous to a quantum dot have
been obtained via the noninertial effects of the Fermi-
Walker reference frame [30-32].

The aim of this paper is to discuss the quantum dynam-
ics of a nonrelativistic neutral particle with a permanent
electric dipole moment interacting with external fields in
a noninertial frame, by exploring the restricted physical
region of the spacetime imposed by noninertial effects.
We show that the restriction of the physical region of the
spacetime imposed by noninertial effects can yield bound
states analogous to having a neutral particle interacting
with external fields confined to a quantum dot with a hard-
wall confining potential [33-37]. We show that the geome-
try of the spacetime plays the role of a hard-wall confining
potential [33-37] due to the presence of noninertial effects.
Therefore, this contribution fills a lack in the study of the
influence of noninertial effects on the quantum dynamics
of a neutral particle with a permanent electric dipole mo-
ment interacting with external fields.

This paper is organized as follows: in Section 2, we make
a brief review of the mathematical formulation of the spinor
theory in curved spacetime [38], and introduce a noniner-
tial frame called a Fermi-Walker reference frame [39]. In
the following, we discuss the analogous confinement of the
neutral particle with a permanent electric dipole moment
to a quantum dot with a hard-wall confining potential in-
duced by noninertial effects; in Section 3, we present our
conclusions.

2. Analogous confinement of a neu-
tral particle to a quantum dot via non-
inertial effects

We begin this section by making a brief review of the
mathematical formulation of the spinor theory in curved
spacetime [38], and by introducing the relativistic de-
scription of a quantum dynamics of a neutral particle
with permanent electric dipole moment. In the follow-
ing, we discuss the nonrelativistic limit of the Dirac equa-
tion and the analogous confinement of the neutral par-
ticle to a quantum dot with a hard-wall confining po-
tential [33-37]. Recently, the Fermi-Walker reference
frame has been used in several distinct studies such as
holonomies in curved spacetime background [18], relativis-
tic Einstein-Podolsky-Rosen correlations [19], geometric
quantum phases for neutral particles [17], Landau quanti-

zation for a neutral particle [24-26], and two-dimensional
quantum dots [30, 31]. We consider a system with cylindri-
cal symmetry, where we can write the line element in the
form: ds? = —dT? + dR? + R? d9? + dZ2. To study the
influence of non-inertial effects on the quantum dynamics
of a neutral particle, we make a coordinate transformation:
T=t R=p, ®d=¢+wt, Z =2z where wis the
constant angular velocity of the rotating frame. Thus, we
can write the line element in the form:

ds? = —dt* + dp* + p? (do + wdt)* + d2°. (1)

We can note that the line element (1) is defined in the
range 0 < p < L. It is easy to check that for values of
p > 1/w, the line element (1) is not well-defined anymore.
For these values of the radial coordinate, the particle is
placed outside of the light-cone because its velocity is
greater than the velocity of the light [40]. In this way, we
have that the range 0 < p < 1; imposes a constraint where
the wave function must be defined. Hence, without loss of
generality, we can consider the geometry of the manifold
as playing the role of a hard-wall confining potential due
to noninertial effects. From now on, our focus is to discuss
how this constraint of the radial coordinate can be used to
confine a neutral particle in analogous way to a quantum
dot with a hard-wall confining potential [33-37].

Taking into account the cylindrical symmetry of the sys-
tem, we can work the Dirac spinors by using the mathe-
matical formulation of the spinor theory in curved space-
time [38]. In a general coordinate system, spinors are de-
fined locally by introducing a local reference frame where
a spinor transforms under infinitesimal Lorentz transfor-
mations: ¢/ (x) = D(A(x)) ¢ (x), where D(A(x)) is the
spinor representation of the infinitesimal Lorentz group,
and A(x) corresponds to the local Lorentz transforma-
tions [38]. A local reference frame can be built through
a noncoordinate basis 8 = e?, (x) dx¥, whose compo-
nents e, (x) are called Vierbein or tetrads and satisfy
the relation [39, 41, 42]: g,, (x) = e (x) €’ (x) Nas,
where n,, = diag(— + ++) is the Minkowski tensor. In
this notation, the indices p, v denote either the space-
time indices or the curvilinear coordinates, while the in-
dices a,b = 0,1,2,3 denote the local reference frame of
the observers. The inverse of the tetrads is defined as
dx' = e’ (x) ¢, where the relations e, (x) e,y (x) = 0%,
e*, (x) e%, (x) = 0", are satisfied. A Fermi-Walker ref-
erence frame is defined by taking the components of the
noncoordinate basis in the rest frame of the observers at
each instant, 8° = €%, (x) dt, where the spatial compo-
nents of the noncoordinate basis &' do not rotate [39]. In
the Fermi-Walker reference frame we can observe non-
inertial effects from the action of external forces without
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any effects from arbitrary rotations of the local spatial
axis. Following the above definition of the Fermi-Walker
reference frame, we can write the tetrads and its inverse
in the form [17, 24-26]:

1 000
e | 0100
H T |l wp0p 0|
0 001
1T 000
0 100
" _
ea(X)_ —(1)01;0 ’ (2)
0 001

By using the local reference frame (2), we can solve the
Maurer-Cartan structure equations [42] and obtain the
connections 1-form w’ = w,?; (x) dx*. In the absence of
the torsion field, the Maurer-Cartan structure equations
are written as: d° + w’ A 6” = 0, where the operator
d corresponds to the exterior derivative and the symbol
A means the wedge product. By solving the Maurer-
Cartan structure equations, the non-null components of
the connecetions 1-form are w,') (x) = —w 2y (x) = =1
and w/; (x) = —w,% (x) = —w.

Now, let us discuss how the noninertial effects of the
Fermi-Walker reference frame can induce a field config-
uration which allow us to obtain either a Landau system
for a neutral particle with a permanent electric dipole mo-
ment [24-26] or confine the neutral particle to a quantum
dot. First of all, we consider a uniform electric field along
the z axis in the rest frame of the observer, thus, we write
this electric field in the form: E3 = €3, £2 = Ey. In
the local nonrotating reference frame of the observer or in
the Fermi-Walker reference frame (2), the fields are given
by [43-45]: F" (x) = e" (x) e", (x) F (x), where F#"
is the electromagnetic tensor with F% = —F% = —FF,
Fi = —Fit = —¢¥* B,. Thus, the non-null components of
the electric and magnetic fields, when the local reference
frames of the observers are Fermi-Walker transported, are

E=E*=Ey B =-wpE’=-wEyp. (3)

Let us introduce the relativistic description of a quan-
tum dynamics of a neutral particle with permanent electric
dipole moment. The relativistic quantum dynamics of such
a particle interacting with external magnetic and electric
fields can be described by introducing a nonminimal cou-
pling into the Dirac equation given by [46-49]

d
VvV, - iy'v,+ ii Dl V5 Fuv (x), (4)

where d is the permanent electric dipole moment of the
neutral particle, F,, is the electromagnetic field tensor,
and V, represents the components of the covariant deriva-
tive of a spinor in curved spacetime which is given by
V, = 0, +,(x). The term [, (x) = £ wuep (x) £
corresponds to the spinorial connection [38, 41, 42], and
£ = i[y“, y*]. The y* matrices are defined in the lo-
cal reference frame, and correspond to the Dirac matrices
given in the Minkowski spacetime [41, 49], ie.,

o1\ o . (10}
/0)"’_3_(0—/)'
g

P P 0 o). i _ 0
Y _Ba_(—a"O)' Z_(0 0")'(5)

with / being the 2 x 2 identity matrix, and s being the
spin vector. The matrices d' correspond to the Pauli
matrices and satisfy the relation (o' o/ + o/ 0') = 2n¥
(i,j,k = 1,2,3). The y" matrices are related to the y*
matrices via y* = e, (x) y? [41]. Taking the expressions
for the connections 1-form, wqu (x) = _w¢21 (x) = —1and
w,"5 (x) = —w,%, (x) = —w, we can calculate the spinorial
connection I, (x), and obtain y* I, = % [24-26, 30, 31].
Hence, the Dirac equation in curvilinear coordinates with
the interaction of the permanent electric dipole moment of
the neutral particle with external fields (3) is given by

oY . oy, [0 1
i3 = mB"D+lw6<p ia 6p+2p ¢
8’0y 50y s Ao =
— l;%—la $+dea-B¢+dBZ-E¢/,

(6)

where the electric and magnetic fields in the Dirac equa-
tion (6) are given in (3). At this moment, our aim is to
obtain the nonrelativistic equation of motion for a neu-
tral particle under the influence of the noninertial effects
of Fermi-Walker reference frame. The procedure in ob-
taining the nonrelativistic limit of the Dirac equation (6)
can be given by writing first the Dirac spinors in the form
Y = e (¢ ), with ¢ and x being two-spinors, and
after considering ¢ as being the “large” component and
X as being the “small” component [49]. Thus, substituting
this solution into the Dirac equation (6), we obtain two
coupled equation of ¢ and x. After some calculations to
decouple the equation for ¢ and y, the Schrodinger-Pauli
equation for a neutral particle with a permanent electric
dipole moment interacting with external electric and mag-
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netic fields in the Fermi-Walker reference frame is [24-26]

ot = 2m|0p®  pop  p2dg? 0822
i 0°0¢p .dwEy 50¢ 1
+ ﬂ?%_lim U%‘Fgmpz
dwEy d’w’E} d¢ 3
(W= E .
+ 5m o+ 5m p¢>+1watp+d 00°¢

/)

We can see in the equation (7) that ¢ is an eigenfunc-
tion of o3, whose eigenvalues are s = +1. Thus, we
can write 03¢, = ¢, = s¢..
serve that the Hamiltonian given in the right-hand-side of

Moreover, we can ob-

Eq. (7) commutes with the operators p, = —i%, and
1, = —i% [50]. Hence, the solutions of the equation
(7) are given in the form: ¢, = e~ i(+2)e oikz R_(p)1,
where [ =0, +1,+£2,... and k is a constant. Substituting
this solution into the Schrodinger-Pauli equation (7), we
obtain the radial equation:

£ 1d
[W+;%—?—52P2—35]R5(P)=01 (8)

where we have defined in (8) the parameters:
i = |+ %(1 —s), 0 = dwEky and B, =
2m [5 +w(l+1/2) — sdEy — 5% (s — %] We wish a so-
lution of the radial equation (8) that is regular at the
origin, thus, the solution can be given in the form:

Gl , 1 B
5 +§—E,|CSI+1,5), 9)

& 16l
2

R(&=e2&7 1F1(

3= 75 is the

confluent hypergeometric function or the Kummer equa-
tion [51]. It is well-known in the literature [51, 52] that the
radial part of the wave function becomes finite everywhere
when the parameter @ + % - 43—; of the confluent hyperge-
ometric function is equal to a non-positive integer number,
making the confluent hypergeometric series to be a poly-

nomial of degree n. By observing that the line element (1)

where & = 6p?, and 1 F; (‘Cz—s‘—l-l—& |(5|+1,5)

is valid only for values of the radial coordinate inside the

range 0 < p < % we have that the condition of making

the confluent hypergeometric series to be a polynomial of

1 It has been shown in Ref. [50] that the z-component of
the total angular momentum in cylindrical coordinates is
given by J, = —id,, where the eigenvalues are j = (£ =

1 3
ii'if'

degree n means that the wave function is defined both in
the physical region of the spacetime 0 < p < 1 and in
the non-physical region p > 1/w. Hence, we cannot just
impose the condition where the confluent hypergeomet-
ric series becomes a polynomial in order to normalize the
wave function of the neutral particle.

In previous work [24-26], we discussed a way of achieving
the Landau-He-McKellar-Wilkens quantization via nonin-
ertial effects by imposing a condition of the induced fields
given by dEy <« w, and making the confluent hypergeo-
metric series to be a polynomial of degree n. With this
condition on the induced fields (dEy < w), we have that
the amplitude of probability becomes very small for val-

ues p > 1/w because the parameter & = §p®> <« 1 when
P
sider the wave function being normalized in the range

1

0 <p<1(sinceR (& ~ 0 when p— 1) A similar

analysis has been made in [30-32] to achieve discrete en-

Thus, without loss of generality, we can con-

ergy levels of a neutral particle with permanent magnetic
dipole moment confined to a parabolic potential analo-
gous to the Tan-Inkson potential for a quantum dot [53-
55], and in [21] to achieve the Landau-Aharonov-Casher
quantization in a rotating frame. Here, we bring the dis-
cussion of obtaining bounds states for a neutral particle in
the present noninertial system without imposing the above
condition on the induced fields.

In this way, in order to obtain a normalized wave function
inside the physical region of the spacetime 0 < p < 1;,
we first consider the radial wave function as vanishing at
p — 1/w. Note that this boundary condition corresponds
to having the geometry of the manifold playing the role
of a hard-wall confining potential due to the influence of
noninertial effects. In this case, we have for a fixed radius
po = 1/w that

R; (% =0 p5) =0. (10)

Our next step is to assume that the intensity of the elec-
tric field Ey is given in such a way that the parameter
0 = dEyw can be considered small. In this way, by taking
a fixed value for the parameter b = |{;|+1 of the confluent
hypergeometric function and a fixed radius py = 1/w, we
can consider the parameter a = @ + 15 - 4‘9—3 of the conflu-
ent hypergeometric function being large. In this way, we
can write the Kummer function of first kind in the form [51]:

1-b
(b)) & (b K
1F1 (G,b,{ozwdEopg)%%QTO(%—G{o)

x cos \/2b50—4050—b7ﬂ+%), (11)

where [ (b) is the gamma function. Substituing (11) into
(9), and by applying the boundary condition (10) (with
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Bs = 2m[E+ w(l+1/2) —sdEg —s2 {, — £]), we ob-
tain a discrete energy spectrum given by

1 7 3rn]° dwkEy
gn,l ~ Tpgl:nﬁ'i‘csi"rT:l + m [5(5‘}‘1}
+ 5dE0—&)|:l+%:|. (12)

The energy levels (12) corresponds to the bound states of
a nonrelativistic neutral particle with a permanent elec-
tric dipole moment interacting with external fields con-
fined to the region of the spacetime 0 < p < 1/wn.
Comparing the result (12) with the studies of the con-
finement of particles to a quantum dot made in [33-37],
we have in this case that the geometry of the spacetime
plays the role of a hard-wall confining potential due to
the presence of noninertial effects that restrict the phys-
ical region of the spacetime where the wave function can
be defined. Moreover, we have that the energy levels (12)
are proportional to n? in contrast to recent studies of the
analogous confinement of a neutral particle to a quantum
dot [30, 31] (given by imposing a condition on the induced
fields pA < w), where the energy levels are proportional
to n in an analogous way to the Tan-Inkson model for a
quantum dot [53-55]. Hence, the spectrum of energy (12)
is analogous to having a neutral particle with a perma-
nent electric dipole moment confined to a quantum dot
described by a hard-wall confining potential [33-37].

Finally, we can also see in the expression (12) the cou-
pling between the angular velocity w and the quantum
number [ induced by noninertial effects, which is called in
the literature as the Page-Werner et al. term [11-13].

3. Conclusions

In this work, we have studied the nonrelativistic quan-
tum dynamics of a neutral particle with a permanent elec-
tric dipole moment interacting with a field configuration
induced by noninertial effects. We have seen that the
geometry of the spacetime can play the role of a con-
fining potential due to noninertial effects yielding bound
states analogous to having a neutral particle confined to
a quantum dot with a hard-wall confining potential as in
Refs. [33-37]. Further, by assuming that the parameter
0 = dEpw is small, we have shown that the spectrum of
energy is proportional to n? in contrast to previous studies
of the analogous confinement of a neutral particle with a
permanent magnetic dipole moment to a quantum dot in-
duced by noninertial effects [30, 31], where the energy
levels are proportional to n in an analogous way to the
Tan-Inkson model for a quantum dot [53-55]. Moreover, we

have also obtained the Page-Werner et al. term [11-13],
which corresponds to the coupling between the quantum
number [ and the anqular velocity w.

We would like to add a comment on the confinement of
a neutral particle to a quantum dot. By considering the
presence of topological defects [56-58], we have that the
presence of a topological defect related to a torsion, for in-
stance a screw dislocation, can modify the electromagnetic
field in the rest frame of the observers [58]. Thus, it should
be interesting to study the influence of torsion, for instance
a screw dislocation or a edge dislocation [56, 57], on the
field configuration induced by the noninertial effects of the
Fermi-Walker reference frame, and on the bound states.
Since the presence of a torsion background can modify the
electromagnetic field, one can expect new contributions to
the energy levels of bound states.

Another interesting point of discussion should be the in-
fluence of noninertial effects on persistent currents. Per-
sistent currents arise from the dependence of the energy
levels of bound states on geometric quantum phases. In
recent decades, persistent currents have been studied for
spinless quantum particles confined to a quantum ring [59],
two-dimensional quantum rings and quantum dots [60]
due to the presence of the Aharonov-Bohm quantum flux.
Other studies of persistent currents have been made based
on the Berry phase [61, 62], the Aharonov-Anandan quan-
tum phase [63, 64], and the Aharonov-Casher geometric
phase [65-68]. Therefore, based on the Sagnac effect[1, 2],
the Mashhoon effect [3] and the analogue of the Aharonov-
Casher effect obtained in noninertial frames [16, 17], geo-
metric phases induced by noninertial effects can yield new
contributions to persistent currents, and it should also be
interesting to study the arising of persistent currents in
noninertial systems.

| would like to thank CNPq (Conselho Nacional de Desen-
volvimento Cientifico e Tecnoldgico - Brazil) for financial
support.
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